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Abstract

Adaptive introgression—the flow of adaptive genetic variation between species or populations—has attracted significant
interest in recent years and it has been implicated in a number of cases of adaptation, from pesticide resistance and
immunity, to local adaptation. Despite this, methods for identification of adaptive introgression from population ge-
nomic data are lacking. Here, we present Ancestry HMM-S, a hidden Markov model-based method for identifying genes
undergoing adaptive introgression and quantifying the strength of selection acting on them. Through extensive valida-
tion, we show that this method performs well on moderately sized data sets for realistic population and selection
parameters. We apply Ancestry HMM-S to a data set of an admixed Drosophila melanogaster population from South
Africa and we identify 17 loci which show signatures of adaptive introgression, four of which have previously been shown
to confer resistance to insecticides. Ancestry HMM-S provides a powerful method for inferring adaptive introgression in
data sets that are typically collected when studying admixed populations. This method will enable powerful insights into
the genetic consequences of admixture across diverse populations. Ancestry HMM-S can be downloaded from https://
github.com/jesvedberg/Ancestry HMM-S/.
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Introduction

is becoming increasingly clear that admixture, gene flow
etween genetically divergent populations, isa common phe-
omenon in nature. In some cases, introgressed genetic ma-
erial confers a selective advantage for individuals in the
ecipient population, commonly referred to as adaptive in-
ogression, and it is thought to underlie the evolution of
umerous adaptive phenotypes (Hedrick 2013; Racimo
t al. 2015; Suarez-Gonzalez et al. 2018), for example pesticide
resistance in mice (Song et al. 2011) and mosquitos (Norris
et al. 2015), and complex mimicry patterns in Heliconius but-
terflies (The Heliconius Genome Consortium 2012). Perhaps
the most famous example is the introgression of an allele of
EPAS1 from archaic Denisovans into a modern human pop-
ulation, where the Denisovan allele is thought to have in-
creased in frequency in Tibet due to higher fitness at high
altitudes (Huerta-Sanchez et al. 2014; Jeong et al. 2014
Racimo et al. 2015). Admixture therefore has the potential
to facilitate adaptive phenotypic outcomes across diverse
populations and is rapidly emerging as one of the fundamen-
tal drivers of natural selection (Hedrick 2013; Suarez-Gonzalez
et al. 2018).

Recent admixture is thought to be an important evolu-
tionary force in Drosophila melanogaster as well. Populations

of this species migrated out from sub-Saharan Africa to col-
onize the rest of the world ~10,000-15,000years ago
(Thornton and Andolfatto 2006). During this expansion,
the population that left Africa experienced a dramatic bot-
tleneck that reshaped haplotypic variation across the ge-
nome, resulting in decreased diversity and extended linkage
disequilibrium (Thornton and Andolfatto 2006; Pool et al.
2012). More recently, descendants of the ancestral and de-
rived populations have admixed in several locations across
the world, and these have been the subjects of numerous
previous analyses of admixture and local ancestry (Pool
et al. 2012; Kao et al. 2015; Lack et al. 2015; Pool 2015;
Bergland et al. 2016; Lack et al. 2016; Corbett-Detig and
Nielsen 2017; Medina et al. 2018). In particular, the population
history for one large admixed sample from South Africa (Lack
et al. 2015) is consistent with a simple admixture model
where cosmopolitan ancestry introgressed into this popula-
tion once ~30 years prior to sampling (Medina et al. 2018).

Although there have been numerous investigations into
the factors that cause nascent reproductive isolation between
populations (e.g, Coyne and Orr 2004) and genome-wide
signatures of selection (Kolaczkowski et al. 2011; Langley
et al. 2012; Reinhardt et al. 2014; Garud et al. 2015), compar-
atively little work has focused on adaptive outcomes resulting
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from admixture in D. melanogaster. As in other species, pes-
ticides are a major driver of selection, and resistance factors
can quickly spread in populations when pesticides are intro-
duced, either from standing genetic variation or from de novo
mutations (Karasov et al. 2010; Garud et al. 2015). In
D. melanogaster, specific alleles of several different genes are
known to confer resistance to common pesticides. For in-
stance, alleles of several Cyp6 Cytochrome P450 genes are
implicated in DDT resistance (Daborn et al. 2002; Schmidt
et al. 2017). Similarly, alleles of the gene acetylcholinesterase
(Ace) can confer resistance to organophosphate pesticides
(Aldridge 1950). Such alleles have been shown to quickly in-
crease in frequency in populations exposed to pesticides
(Daborn et al. 2002; Menozzi et al. 2004; Karasov et al.
2010) and in the case of Ace and Cyp6g1, the resistant alleles
are thought to have arisen de novo on multiple distinct
haplotypes in cosmopolitan populations during adaptation
and are therefore often cited as examples of soft sweeps
(Karasov et al. 2010; Garud et al. 2015). These results have
also been argued to show that adaptation in D. melanogaster
is not limited by de novo mutations (Karasov et al. 2010), but
little is known about how the balance of de novo mutations
and gene flow has shaped current day patterns of pesticide
resistance.

Adaptive introgression results in characteristic genomic
signatures that are distinct from both those of neutral intro-
gression and those of classical models of natural selection at
the molecular level. First, adaptively introgressed alleles will
typically exceed the baseline introgression fraction (fig. 1A).
Second, because adaptive haplotypes increase quickly in fre-
quency, the surrounding segments of nonrecombined ances-
try is expected to be longer than under a neutral model
(Shchur et al. 2020). To a first approximation, these patterns
are qualitatively similar to classical models of selective sweeps.
However, because introgressing haplotypes are genetically dis-
tinct and selected alleles are introduced at moderate starting
frequencies, the characteristics of genetic variation associated
with alleles contributed by adaptive introgression differs sub-
stantially (Fraisse et al. 2014; Racimo et al. 2015; Shchur et al.
2020). Moreover, even neutral admixture affects haplotype
patterns, confounding direct quantification of selective coef-
ficients using conventional techniques for selection in single
populations (Lohmueller et al. 2011; Racimo et al. 2015).
Accurate detection and quantification of adaptive introgres-
sion therefore cannot rely on many of the rich and detailed
models of adaptive evolution (reviewed for instance in
Pavlidis and Alachiotis 2017) and remains a fundamental
challenge in evolutionary genomics (Racimo et al. 2015).

An identifying characteristic of adaptively introgressed
alleles is that they reach higher frequencies than neutral alleles
(Hedrick 2013; Racimo et al. 2015; Suarez-Gonzalez et al.
2018). A first step in specifically searching for adaptive intro-
gression is therefore to infer the ancestry frequencies of
admixed samples locally across the genome, which is typically
accomplished using hidden Markov models (HMM) (Falush
et al. 2003; Sankararaman et al. 2008; Baran et al. 2012; Maples
et al. 2013). By identifying loci with unusually high propor-
tions of introgressing ancestry within admixed populations, it

is sometimes possible to detect signatures of adaptive intro-
gression (Racimo et al. 2015). However, these approaches
typically require tailor-made methods for identifying local
ancestry outliers consistent with selection. Moreover, as de-
scribed above, natural selection itself shapes the resulting
ancestry tract length distribution, and a more general and
powerful method for detecting and quantifying adaptive in-
trogression could explicitly model the consequences of adap-
tive introgression during local ancestry inference (LAI).
Recently, a few software packages for detecting adaptive in-
trogression have been released. Genomattn (Gower et al.
2020) uses convolutional neural networks to perform this
task, and VolcanoFinder (Setter et al. 2020), can infer adap-
tively introgressed loci from patterns of elevated heterozygos-
ity surrounding the introgressed allele. VolcanoFinder is
intended for mutations that were introduced from a highly
divergent population and then went to fixation some time in
the past. Although it has the advantage of not using data
from the donor population, making it applicable in human
genetics to detect introgression from unsampled and now
extinct hominins, it is less suitable for detecting more recently
introgressed adaptive alleles that have still not gone to fixa-
tion, or alleles introgressed from a closely related population.
The objective of this article is to develop a method applicable
to segregating alleles, from possibly highly related popula-
tions, when reference data from the donor population are
available.

We have previously developed a method for LAl named
Ancestry HMM (Corbett-Detig and Nielsen 2017; Medina
et al. 2018). Briefly, our approach uses an HMM framework
to perform LAl using genomic samples from an admixed focal
population and two unadmixed, ancestral reference popula-
tions. By assuming a neutral admixture model (Liang and
Nielsen 2014), our approach can infer both the timing of
multiple admixture pulses and local ancestry patterns across
the genome based on low coverage data from unphased
diploid samples or samples of arbitrary ploidy, including
data generated through pooled sequencing strategies.
Because of the generality of this framework, it is both possible
and appealing to expand this approach to explicitly model
and search for the contributions of adaptive introgression to
patterns of local ancestry within samples from admixed
populations.

Here, we introduce a novel method called
Ancestry_ HMM-S (AHMM-S, where S stands for selection)
to explicitly model the impacts of natural selection during
admixture. Our approach enables the detection of adaptive
introgression and estimation of the strength of selection act-
ing on individual loci. We validate this approach through
extensive forward simulations, demonstrating that AHMM-
S is robust under many plausible scenarios of selection during
admixture. We use AHMM-S to analyze a genomic data set of
admixed samples of D. melanogaster from a population in
South Africa, where we identify several loci that show signa-
tures of adaptive introgression. Our results show that selec-
tion has driven cosmopolitan haplotypes carrying insecticide
resistant alleles to high frequencies, likely a result of the ap-
plication of chemical insecticides in South Africa.
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Fic. 1. (A) Following an admixture event, recombination will break up introgressed haplotypes. In the absence of selection, the frequency of the
introgressed genotype (red regions) is expected to remain at a constant low level and haplotype lengths are expected to be short. If positive
selection is acting on an introgressed locus (yellow star), the genotype frequency is expected to be higher, and the haplotype lengths larger. (B)
Cartoon of two scenarios of adaptive introgression. The top panel shows the genotype frequencies of a (blue) 1% introgression pulse of an adaptive
locus with weaker selection at position 0, sampled after 400 generations, and (orange) a 10% introgression pulse with stronger selection sampled
after 200 generations. The bottom panel shows the corresponding transition rates. In general, larger introgression pulses correspond with high
baseline transition rates (i.e., the probability of recombination event between the two genotypes) and stronger selection with bigger haplotype
blocks and dips in transition rates in a wider region surrounding the selected site. (C) An example of simulated population with a 1% introgression
pulse and a selected allele with s =0.05 at position 5,000,000. The frequency of the introgressed genotype is shown in red, and the expected
transition rate of the selected site in black (in transitions from the introgressed genotype to the receiving genotype per Morgan). (D) Likelihood
surface of simulated chromosome. Adaptive introgression was inferred using AHMM-S for values of s from 0.001 to 0.15 at every 10 sites along the
chromosome, for the same simulation as shown in C. The likelihood ratio for each unique combination of site and s is plotted. The red cross marks
the position and selective coefficient used in the simulation.

Results and Discussion However, in order to take selection into account, we must
update the transition probabilities to reflect the expected
increased frequency of the selected site relative to back-
ground levels (i.e, the initial admixture fraction) (fig. 1B).
We do this by modeling the increase in frequency of an ad-
ditively adaptive allele using a familiar logistic deterministic
approximation (Kaplan et al. 1989), as well as the decay of the
introgressed haplotypes surrounding the locus through re-
combination (Shchur et al. 2020) (fig. 1C). By optimizing
this model at regular intervals along a chromosome and com-
paring these results to neutral models, we can detect loci that

Expected Patterns of Ancestry Transitions during
Adaptive Introgression

We began by modifying Ancestry_ HMM to estimate the like-
lihood of adaptive introgression from haplotype patterns
surrounding a candidate locus. We did this by adapting a
framework for calculating the expected lengths of haplotypes
carrying an adaptively introgressed allele that we have previ-
ously developed (Shchur et al. 2020), and implemented a fast
method for calculating the corresponding transition rates

that are used in the HMM. Briefly, we assume a single discrete experience adaptive introgression and quantify the strength
admixture event, a “one-pulse” model, that took place t gen- of selection that has acted on these sites (fig. 1D).

erations prior to the time of sampling. The probability of the

ancestry states in a HMM (emissions probabilities) is not Model Evaluation and Validation

affected by selection and is unchanged from In order to validate AHMM-S, we performed forward simu-
Ancestry_HMM and we therefore refer readers to previous lations of selection during admixture. In brief, we simulated
works for details on how these probabilities are calculated admixed populations of diploid individuals which received an
(Corbett-Detig and Nielsen 2017, Medina et al. 2018). introgressive pulse from a second population carrying an
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Fic. 2. AHMM-S was validated over a range of scenarios for adaptive introgression. The precision of the estimated selective coefficient and genomic
location of the selected locus is plotted, together with the corresponding likelihood ratio and frequency of the introgressed genotype. Each row
shows a different selective coefficient used in the simulations. Both the likelihood ratio and the precision of the estimates correlate strongly with
the frequency of the selected locus. The x-axis shows the sampling time in generations since admixture. Each datapoint shows the mean value of 20

simulations, and error bars show the standard deviation.

adaptive allele, t generations prior to sampling. We simulated
low coverage, short-read allele counts for 25 diploid individ-
uals, in order to represent a realistic and modest sampling
strategy. The simulated reads were conditional on a fixed
error rate and their known genotype at each site. We varied
the admixture fraction m between 0.01 and 0.5 and the se-
lective coefficient s of the adaptive allele from 0 to 0.1, and we
sampled the population at steps from 50 to 1,000 generations.
We estimated a selective strength at each locus in our simu-
lated data set and identified the selected site as the site with
the highest likelihood ratio across the chromosome, as might
typically be done when searching for adaptive introgression in
real data sets.

Our simulations cover an extremely broad range of param-
eter spaces, and whereas AHMM-S performs generally well,
we were also able to define several important limitations
(fig. 2). At lower levels of selection and shorter time periods
since introgression, it is difficult to identify the position of the
adaptively introgressed locus. The mean distance to the locus
is on the order of 1 Mb, suggesting that the inferred locus is
generally incorrect and that outlier values in likelihood ratio is

mostly caused by noise. This is consistent with likelihood
ratios under these conditions being low (<50), as well as
the inferred selective coefficients being too high. This phe-
nomenon is likely caused by there being little difference in
genotype frequency of the selected locus compared with the
other neutrally segregating introgressed loci. Since our
method depends on there being a difference in genotype
frequencies, and correspondingly transition rates, it has low
power to distinguish adaptive introgression from noise under
these conditions.

Nonetheless, the method performs well in general for a
range in the plausible parameter space, and we find that for
populations sampled 300 or more generations after admix-
ture with moderate selection (s = 0.01), the model accurately
estimates both the position of the selected site and the
strength of selection. In cases of stronger selection
(s > 0.05), the inferred position and estimated selective coef-
ficient are close to the real value already at 50 or 100 gener-
ations. Under favorable conditions, we are able to identify the
correct position within a few kb, which is close to the limit of
resolution in our simulations, which are based on SNP
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densities found in D. melanogaster. The inferred selective
coefficients are also close to the real value under these con-
ditions, and the error is within 20%.

Overall, AHMM-S works best when selection is strong and/
or when selected sites have reached frequencies that are sig-
nificantly higher than baseline introgression levels. These are
conditions that are most likely to be associated with impor-
tant phenotypic changes and are for this reason of greatest
interest to biologists. Nevertheless, weakly selected sites may
reach high frequencies over longer periods of time.
Unfortunately, this also means that recombination will have
time to break diagnostic haplotype patterns apart, decreasing
the ability to quantify the relevant selective coefficient. This
pattern is expected over time scales beyond what we validate
for here and that is much longer than is suitable for most LAI
applications.

Effects of Algorithm for Calculating Expected Transition Rates
We evaluated the simulated scenarios above using the four-
point analytical approximation of the expected transition
rates. This method calculates expected transition rates for a
given site and a given selective coefficient based on just four
sites spaced along the chromosome and then interpolates the
rates for all other sites, but we also evaluated the performance
of a slower forward iteration-based approach, where the
expected transition rate is instead calculated between each
pair of loci along a chromosome for a given model of selec-
tion. We applied the same simulation strategy for a subset of
population parameters using the forward iteration algorithm
and inferred adaptive introgression (supplementary fig. S1,
Supplementary Material online). Both methods perform sim-
ilarly well across a range of input parameters, and we there-
fore decided to only use the four-point approximative
method for further analysis.

Effects of Sample Size and Sequencing Approach

We tested the effects of sample size by increasing the number
of individuals in the set of simulated reads from 25 to 75
(fig. 3). Although a larger sample size improved the estimates
of both the selective coefficient and the location of the locus,
the effects on the estimated selection coefficient was gener-
ally small. Therefore researchers should use the largest feasible
sample size when studying adaptive introgression using this
method, although the primary results from the modest sam-
ple sizes suggest that this method is applicable for all species
but those that are most challenging to sample in high
numbers.

We also investigated the performance of AHMM-S when
using pooled sequencing data. A subset of the simulated
populations were converted to pooled reads (instead of reads
separated by individual), and adaptive introgression was then
inferred (fig. 3B). The estimated strength of selection is close
to the real value, and errors ranging from 5% to 25%, which is
comparable to the values generated when using individually
sequenced samples instead. The accuracy of the position es-
timate is worse than for individually sequenced samples,
though it also improves with stronger selection and longer

2156

time since admixture. We therefore suggest using individually
barcoded and sequenced samples, but pooling may provide
an economic tradeoff if accurately mapping the specific se-
lected site is not a primary concern.

Generating a Null Model

AHMM:-S performs a likelihood test for each site (or a subset
of sites) on a chromosome, and for relatively densely spaced
markers this implies a substantial number of hypotheses are
tested in a single run of the program. As many of the sites will
be in genetic linkage with each other, these tests are not
independent. Furthermore, since linkage is expected to decay
over time, identifying a cutoff for statistical significance is
difficult and to some degree depends on the time since ad-
mixture. For this reason we recommend performing simula-
tions of a neutral introgression scenario with similar
population parameters as the data set of interest. The distri-
bution of likelihood ratio scores generated in these simula-
tions can then provide a null model for variation in likelihood
scores under a neutral admixture model.

Computational Performance

The computational performance of AHMM-S is influenced by
the number of sites, the number of samples and the type of
algorithm used for approximating the trajectory of a selected
allele. A data set with 20,000 sites and 25 diploid individuals
takes ~2h using a single thread of an Intel i7-8550U CPU
when using the 4-point approximation method for comput-
ing the transition rates and 6.5 h for the same data set when
using the forward iteration method to obtain transition rates.
Memory usage is similar for both methods with 120-140 Mb
used for both algorithms. When using a larger data set con-
sisting of 75 individuals, computation time is ~4 times longer,
and memory usage rises to 700 Mb.

Robustness to Parameter Misspecification

AHMM-S assumes knowledge of several demographic param-
eters, including the time of introgression, the admixture frac-
tion and the effective size of the admixed population. In
practice, these must also be estimated from the data and
the true parameters cannot be known without some uncer-
tainty. We have previously shown that LAl using
Ancestry_ HMM is neither strongly affected by parameter
misspecification nor the presence of selection (Corbett-
Detig and Nielsen 2017), but that the estimated times since
introgression were. We therefore evaluated the robustness of
estimates of selective strength by AHMM-S and the conse-
quences of poorly estimated parameter values, by intention-
ally misspecifying the necessary parameters on a subset of the
simulations used for validation. Although misspecifying pop-
ulation size has little effect on the final estimated selective
coefficient, both time since introgression and the admixture
fraction can skew the estimate (supplementary fig. S2,
Supplementary Material online). Even so, if the specified val-
ues are within 20% of the true values, the errors in estimation
of s are within 40%.
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Fic. 3. (A) Comparison of precision of estimated selective coefficient and positions for 25 and 75 individual samples. Increasing the sample size
improves the estimate of both s and p, but has a stronger effect on the precision of the inferred position. (B) Effects of sampling strategy on
inference of adaptive introgression. Forward simulations of adaptive introgression were converted to simulated reads of either 25 or 75 diploid
individuals sampled separately, or of 25 diploid individuals sampled as a pooled set of reads. The effects on the inferred selective coefficient are
minor, but increased sampling improves the inference of the location of the selected site.

In general, it is straightforward to accurately estimate the
overall admixture fraction using a range of approaches (for
instance Pritchard et al. 2000; Alexander et al. 2009) and our
previous work has shown the time of admixture can be ap-
proximated well using approaches that we (Corbett-Detig
and Nielsen 2017; Medina et al. 2018) and others (Pool and
Nielsen 2009; Gravel 2012; Loh et al. 2013) have developed,

even with moderate impacts of natural selection. In contrast,
the effective sizes of admixed populations may be challenging
to accurately infer. However misspecification of the effective
population size has only a minor impact on estimates of
selection obtained using this method, suggesting that our
approach is robust even to substantial uncertainty regarding
the effective population size.
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Effects of Continuous Gene Flow, Going to Fixation,
Dominant/Recessive Selection, and Segregation in the Donor
Population

AHMM:-S uses a simple model for adaptive introgression,
which assumes 1) a single pulse of introgression, 2) that the
selected allele is fixed in the donor population, and 3) that
selection is additive for the adaptively introgressed allele. We
tested the performance when violating these assumptions by
simulating populations where there was either continuous
gene flow for 20-100 generations, where the selected locus
was segregating at 50% in one ancestral population or where
the selected allele was either dominant or recessive. The
results are summarized in supplementary figures S3-S5,
Supplementary Material online. In general, AHMM:-S is able
to identify adaptive introgression in these cases, but with
somewhat reduced precision compared with when the pop-
ulation model is not violated.

A further limitation of AHMM-S is that it is not capable of
estimating the selective coefficient when the selected allele
has gone to fixation. This is caused by the method that is used
to calculate the expected transition rates (supplementary fig.
S6, Supplementary Material online). In such a scenario, the
program is still generally capable of identifying the location of
the adaptively introgressed site, but the reported value of s
will be lower than the true value. As it is possible to quantify
the local ancestry along the chromosome with the software
package on which AHMM-S is based (Corbett-Detig and
Nielsen 2017), it should be easy to identify such cases.

The Effects of a Small Introgression Fraction

AHMM-S calculates expected transition rates based on a lo-
gistic function for calculating the allele frequency trajectory of
the selected site. As noted in Shchur et al. (2020), this logistic
function is only a good approximation of the trajectory when
the admixture pulse is large. Shchur et al. developed a simple
stochastic method based on multiple forward simulations for
estimating the trajectory when the admixture pulse is small,
and we implemented it in AHMM-S. We compared the lo-
gistic and the stochastic methods for simulations of popula-
tions with m = 0.001 and m = 0.0001, where we conditioned
the simulations on the selected allele not being lost by drift. In
our simulations (supplementary fig. S7, Supplementary
Material online), we see little effect of a small m on our
estimates, and no large difference between the logistic and
stochastic methods for approximating the trajectory of the
adaptive allele. As the logistic approximation is significantly
faster, we would recommend its use even in cases where the
initial admixture pulse is very small.

Linkage between Multiple Selected Sites

Multiple selected sites can be located near each other, and we
examined how AHMM-S can handle such a scenario and how
it affects inference of selective coefficients. We ran simulations
where two positively selected sites were placed at varying
distances from each other, ranging from 0.1 to 5cM, and
inferred adaptive introgression (supplementary fig. S8,
Supplementary Material online). When the two sites are
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located in close proximity (0.1cM), AHMM-S will typically
produce a single peak for both the likelihood ratio and the
inferred selection. The inferred selection coefficient is close to
the sum of s for each site, as would be expected for additive
selection. When the sites are placed at increasingly large dis-
tances, individual peaks are distinguishable from 1 to 2cM,
and the additive effect is diminished as the distance increases.
Care must still be taken though, when interpreting the in-
ferred selective coefficients in such cases as they are likely to
be overestimations reflecting in part the joint effect of two
sites.

It is also possible that negatively selected loci affect the
inference of adaptive introgression at linked sites. Purging of
weakly deleterious alleles following admixture has been sug-
gested in a number of systems (Harris and Nielsen 2016; Kim
et al. 2018; Meiklejohn et al. 2018) often causing large changes
in introgression patterns along the genome. Although we do
not consider this effect here, we expect that patterns of large
peaks of introgressing ancestry are unlikely to occur under a
model of purely weakly deleterious variation and are unlikely
to dramatically affect inferences using this method.

Detecting Negative Selection

AHMM-S can detect negatively selected sites as well by treat-
ing negative selection of the introgressed genotype as positive
selection of the receiving genotype (defined as the less com-
mon genotype and more common genotype respectively). To
test how well this works, we ran a smaller set of simulations (s
was set to —0.05 and m to either 0.1 or 0.01) where a single
introgressed allele experienced negative selection following
admixture. Supplementary figure S9, Supplementary
Material online shows the case where m is 0.1, and whereas
we can easily detect the position of the negatively selected
locus, the introgressed allele will quickly be lost, which leads to
an underestimate of the selective coefficient. For this reason,
we expect that it will often be challenging to detect negatively
selected alleles with small introgression fractions. However, if
selection is weak and the introgression pulse is large the allele
will segregate for a significant time and AHMM-S will be able
to generate a reasonably accurate estimate of the selective
coefficient.

Suitability for Detecting Dobzhansky—Muller
Incompatibilities

A specific example of negative selection that is expected to be
common following admixture between species and distantly
related populations are Dobzhansky—Muller incompatibilities
(DMls) (Coyne and Orr 2004) and there has also been con-
siderable interest in identifying DMIs within admixed popu-
lations (Corbett-Detig et al. 2013; Schumer et al. 2014; Pool
2015; Powell et al. 2020). DMIs are caused by complex epi-
static interactions between at least two different loci and we
therefore evaluated how our approach might cope with such
scenarios. As a proof of concept, we simulated several two-
locus DMI scenarios and used AHMM-S to identify sites
which show signs of selection. We found that our method
consistently identifies selected sites with high accuracy, that is,
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Fic. 4. Signals of introgression across the genome in a South African population of Drosophila melanogaster. 17 loci (red dots) showed evidence for
adaptive introgression (likelihood ratio > 15, dotted green line) and were located with a distance between peaks of at least 2 cM. Most putatively
selected loci are located on chromosome 3R. There’s a clear correlation between the frequency of the introgressed genotype (top panel) and the
likelihood ratio (middle panel) and inferred selective coefficient (bottom panel).

selected loci are detected within 8 kb. As expected, due to the
conditional nature of selection against DMI loci, estimated
selective coefficients are typically small relative to a single
locus model, with estimates 50-90% lower than the actual
value (supplementary fig. S10, Supplementary Material on-
line). Our approach may therefore be applicable for detecting
DMTI’s in addition to adaptive alleles. However, we caution
that without additional evidence (e.g, linkage disequilibrium
in admixed samples) or experimentation to demonstrate ep-
istatic selection, it will not typically be possible to distinguish
between DMI’s and strong single locus selection based purely
on the results from our program. If possible, putatively se-
lected sites should be biologically interrogated to identify
specific likely modes of selection. Furthermore, parameters,
such as the distance between the incompatible loci, the size
and timing on the admixture pulse can affect the strength
and direction of selection on incompatible loci, and compar-
ing real data to simulations with similar parameters may also
provide increased confidence in the presence of DMIs.

Adaptive Introgression in D. melanogaster

In order to test AHMM-S on real data, we selected a popu-
lation sample of D. melanogaster from South Africa that has
shown signals of admixture in previous studies (Lack et al.
2015; Corbett-Detig and Nielsen 2017; Medina et al. 2018).
This data set is moderately sized (n=81), the admixture
history is approximately consistent with a one-pulse admix-
ture model, and the previously estimated time since admix-
ture (m=0.17, t=430 generations) suggests that this
population is ideally suited for testing our approach
(Corbett-Detig and Nielsen 2017; Medina et al. 2018). First
we performed simulations of neutral admixture in a similar
population, to determine the null model against which we
test for adaptive introgression. We identified likelihood ratio
outlier peaks (Materials and Methods) and then determined
the likelihood ratio threshold that would generate on average
a single false discovery per genome. In our case, this threshold

is 15; that is, we expect one likelihood ratio outlier above 15
under a neutral model.

We then applied our method to this population, where we
observed highly variable patterns of adaptive introgression
across the genome. Specifically, we identified one locus on
chromosome 2L, three on 2R, 13 on 3R, and none on 3L and X
as putative targets of selection following admixture, with se-
lection coefficients ranging from 0.0046 to 0.0115 (fig. 4 and
table 1). We therefore find evidence for moderately strong
fitness effects associated with introgressing cosmopolitan an-
cestry in the focal population. The inferred selective coeffi-
cients are consistent with our expectations given the
relatively short time since admixture, in which selection
would need to be relatively strong to drive alleles to moderate
frequencies.

Selection for resistance to commonly used insecticides
might underlie many of the signatures of adaptive introgres-
sion that we observe. Several candidate loci are located close
to genes known to be associated with resistance, such as the
three loci on 2R, which are all located within 5 kb from Cyp6
Cytochrome 450 genes. Two of the most prominent likeli-
hood ratio outliers are located next to Cyp6g1 and Cyp6w1
respectively, and allelic variants of these genes are specifically
known to confer resistance to DDT exposure (Daborn et al.
2002; Schmidt et al. 2017). The third candidate locus is located
close to a cluster of several Cyp6 genes, of which Cyp6a17 and
Cyp6a23 have been shown to be associated with resistance to
other insecticides (Battlay et al. 2018). Additionally, the can-
didate site with the highest likelihood ratio on chromosome
3R is located within the acetylcholinesterase (Ace) gene.
Several different common alleles of Ace confer resistance to
the large class of organophosphate insecticides and it is a
locus that is known to be under selection when these insec-
ticides are introduced (Karasov et al. 2010; Garud et al. 2015).
Resistance to insecticides is a strong candidate phenotype
driving adaptive introgression because DDT and most other
insecticides were first applied for insect control in populations
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Table 1. Candidate Loci for Adaptive Introgression in South African Drosophila melanogaster.

Position Frequency of Estimated Selective  Likelihood Candidate Genes

Chromosome (bp) Introgressed Genotype Coefficient Ratio (within 5 kb)

2L 22782051 0.83 0.0076 30.5

2R 6174331 0.57 0.0079 61.1 tRNA:Arg-ACG-1-3, tRNA:Lys-CTT-1-5, tRNA:Arg-
ACG-1-4, Cyp6w1, tRNA:Arg-ACG-1-5

2R 12182790 0.48 0.0055 30.0 EndoG, asRNA:CR45264, CG8860, wash, CG33964,
CG13175, SmF, Cyp6g1

2R 14869645 0.46 0.0046 19.4 Pcf11, Cyp6a22, Cyp6al7

3R 13250975 0.65 0.0115 111.4 Ace

3R 15037772 0.62 0.0110 97.8 RpL10Aa, IncRNA:CR44944

3R 20295870 0.62 0.0110 92.2 Cic

3R 15887044 0.49 0.0088 69.4 CG14877

3R 22181404 0.48 0.0092 58.7 SKIP

3R 21318439 0.43 0.0088 57.2 IncRNA:Hsromega, mir-4951, CG16791

3R 10929354 0.45 0.0083 51.8

3R 23666552 0.45 0.0076 37.2 CG31145

3R 19962983 0.40 0.0065 22.0 Hs6st

3R 17696124 0.34 0.0055 219 IncRNA:CR46036, osa

3R 7919356 0.40 0.0057 215 CG2678, CG10445, Ids, scaRNA:MeU2-C41, dsx

3R 14266513 0.37 0.0056 20.9 CG14841, CG14839, trx, asRNA:CR46020

3R 25262165 0.55 0.0051 17.3 Nup358, CG11857, CG10425, asRNA: CR46099,

CG11858, GInRS, RIOK2, asRNA:CR45214

outside of Africa, where resistance originally evolved (Schmidt
etal. 2017). DDT is still actively used in South Africa to control
mosquito populations (Biscoe et al. 2005), and the country
imports a wide range of other broad-spectrum insecticides
(Quinn et al. 2011). Our results therefore strongly suggest that
resistance to commonly used pesticides has been a primary
driver of adaptive introgression in admixed populations of
D. melanogaster.

In total, 17 loci are classified as potential candidates for
adaptive introgression. We performed a gene ontology (GO)
analysis of genes that were either spanning, or were located
within 5 kb of the candidate locus (N = 46). Two categories,
“organic cyclic compound binding” and “heterocyclic com-
pound binding” (both N =21) showed a significant enrich-
ment (at g < 0.1) after correcting for false discovery rate
(supplementary table S1, Supplementary Material online).
We note that these GO categories contain many more genes
in addition to Ace and Cyp6 genes, presenting the possibility
that our method may have identified genes that contribute to
insecticide resistance in nature and that were not previously
known (table 1 and supplementary table S1, Supplementary
Material online). For instance, of the other potential adap-
tively introgressed genes, IncRNA:Hsrc» has been shown to
provide some protection against insecticides in laboratory
experiments (Chowdhuri et al. 2001), but it has not been
identified in selection scans. As each candidate locus is lo-
cated close to several genes, further functional work is nec-
essary to determine exactly which genes are driving the
signatures of selection and their specific phenotypic effects.

Our findings here mirror earlier studies on selection in
D. melanogaster, and two of our most distinct outliers, Ace
and Cypé6g1, have also been strong outliers in selection scans
presented in previous papers (e.g, Karasov et al. 2010; Garud
et al. 2015). In the case of Ace, several different alleles which
confer resistance to insecticides have been found at high
frequencies in cosmopolitan populations, and Karasov et al.
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argues that this suggests that adaptation in this species is not
limited by the mutation rate. These mutations are thought to
have appeared in cosmopolitan populations and loci show-
ing signs of adaptive introgression in our data set is consistent
with this idea, especially since the majority of D. melanogaster
genetic diversity is found in Africa (Begun and Aquadro 1992;
Thornton and Andolfatto 2006; Pool et al. 2012). On the
other hand, this suggests that adaptation to pesticides is
not driven by additional de novo mutations in our data
set, but instead it is shaped in large part by introgression.

In Garud et al,, three genes showed the strongest signals for
recent strong selection. Besides Ace and Cyp6g1, which we
find here, CHKov1 was also a major outlier. A transposon
insertion inside CHKov1 is associated with resistance to
both infection by the sigma virus and to organophosphate
pesticides (Aminetzach et al. 2005; Magwire et al. 2011). We
do not find CHKov1 among our set of genes, but it is located
~60kb from one candidate peak (on chromosome 3R posi-
tion 25262165). It is possible that we were not able to identify
the exact position of this gene with sufficient precision, but
simulations above suggest that we can accurately map loci
with this strength of selection. It is also possible that cosmo-
politan alleles at this locus are not selected within our focal
population. Consistent with this idea, CHKov1 is thought to
have spread from standing variation that was present within
the ancestral African populations (Aminetzach et al. 2005;
Magwire et al. 2011). Our results are therefore concordant
with expectations from known geographic distributions of
strongly selected insecticide resistance loci and further sup-
port the idea that resistance to insecticides has been an im-
portant driver of adaptive introgression.

Conclusions

Generalized tools for inferring and mapping adaptive intro-
gression and estimating the strength of selection from geno-
mic data have long been lacking. Here, we provide an
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approach for this problem that is well-suited for detecting
adaptive introgression in commonly generated data sets.
AHMM:-S can both identify the locations of adaptive intro-
gression genes and infer their selective coefficients. It is robust
over a range of introgressive scenarios, and especially in cases
where an adaptively introgressed gene has strongly increased
in frequency. Such scenarios are especially important, as the
loci with the most severe shift in genotype frequencies are
more likely to be important for understanding adaptation.
Many previous studies have addressed the question of adap-
tive introgression by tailoring analysis methods to the specific
data at hand (for instance Sankararaman et al. 2014; Vernot
and Akey 2014), but AHMM-S provides a more general solu-
tion and enables searches for adaptive gene flow over a large
range of eukaryotic species.

AHMM-S is based on a simple model of adaptive intro-
gression with positive selection of a single locus following a
single introgression pulse. Despite this it can still identify
adaptive introgression with reasonable precision from more
complex scenarios, such as continuous gene flow. To improve
the performance in the future, these phenomena could be
explicitly modeled when generating the expected transition
rates. We could model negative background selection around
a positively selected site, or different selective regimes, such as
balancing or conditional selection, to improve our estimates
of selective strengths. In the case of balancing selection, we
would currently expect to be able to identify the selected
locus (given the introgression pulse is different from the equi-
librium frequency of the selected site), but it would be inter-
preted as a positively selected site. In order to infer the exact
nature of the adaptive evolution that has taken place for
more complex scenarios, such as balancing selection or epi-
static interactions, it will most likely be easiest to generate
expected haplotype patterns and transition rates through
simulations, rather than analytical approximations.

In this work, we also use AHMM-S to investigate possible
adaptive introgression in D. melanogaster in South Africa.
Several of the loci we identify are associated both with pes-
ticide resistance and with strong selection in cosmopolitan
populations, suggesting that pesticide use has been a major
driver of selection both in sub-Saharan Africa and elsewhere.
Although some of these resistant alleles are thought to have
evolved through de novo mutations in cosmopolitan popu-
lations, here, we find that they have been introduced through
introgression in South Africa. This positions admixture to be
an important factor to consider when studying the causes of
adaptation and selection within species and populations.

Materials and Methods

We developed an approach based on an adaptation of
Ancestry HMM (Corbett-Detig and Nielsen 2017; Medina
et al. 2018) that allows one to infer adaptive introgression
by implementing a model for tract length distributions sur-
rounding an adaptively introgressed locus (Shchur et al.
2020). This allows us to calculate expected transition rates
between the two genotypes at a given distance from a locus
of interest, which then can be used in a HMM that can

calculate a likelihood score for a particular value of s at a
particular site. We assume a single discrete admixture event,
a “one-pulse” model, that took place t generations prior to
the time of sampling. Therefore, the state space of the HMM
is all possible counts of chromosomes of ancestry type one
given the number of chromosomes, or ploidy, of a sample
(eg, for a diploid, H = {0,1,2}). The probability of the ances-
try states at a given site in an admixed genome is unchanged
in our modified framework (emissions probabilities, see
Corbett-Detig and Nielsen 2017, Medina et al. 2018).
However, to incorporate natural selection, we must update
the transition probabilities to reflect the increased frequency
of the selected site relative to background level. We define a
three locus coalescent process where one site denotes an
introgressing allele experiencing additive selection. The other
two sites trace the ancestry linked to that site. For example, at
the time of admixture, the only possible three locus haplo-
types are 0*-0-0 and 1*-1-1, where * denotes the selected
locus. By tracking the frequencies of recombinant haplotypes,
that is, chromosomes in which the two linked sites corre-
spond to different ancestry states (0*-1-0, 0*-0-1, 1*-1-0, 1*-
0-1), we can define an ancestry transition model along the
chromosome in the regions adjacent to the selected site.
Given a data set with known recombination rates between
each site, AHMM-S can then generate expected transition
rates going away from that site in each direction, either by
using a forward iteration strategy, where the transition rates
between adjacent sites are calculated for each site along a
chromosome, or through an approximative method which
can interpolate transition rates based on just four sites.

When running AHMM-S, a single chromosome data set is
specified, together with the population size N, introgression
fraction m and time since introgression t, which all need to
have been estimated previously. AHMM-S will then estimate
a likelihood ratio for a specific site p and a specific selective
coefficient s compared with the neutral case for that site.
AHMM-S will loop over all sites, or a subset of sites, and
can then either calculate the likelihood ratio in a grid for a
defined set of values of s, or find the value of s that gives the
highest likelihood for each site, by using golden section search.
The size of window used in the HMM can be specified by the
user, as can the number of sites that will be analyzed.

4-Point Approximation

The transition rates between ancestries of different types are
functions of recombination distance r from the site under
selection. In particular, the transition rate f1o(r) from ancestry
type 1 to ancestry type 0 is a monotonously growing function
with a finite limit at infinity which is equal to the transition
rate under neutrality. Similarly, the transition rate f;(r) is a
monotonously decreasing function. We will search for an
approximate solution of these functions in a form of

frolr) =L — ke,

where coefficients L, k, o and p can be calculated as follows.
Let ry and r, be two points such that 0 < r; < o0o.We can
estimate transition rates numerically for r = 0, r; and r,.
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In order to be informative, r, can be set to the value of
expected tract length under neutrality, and we set
ri = r,/10. The expected tract length under neutrality
can be calculated analytically under SMC' model (Marjoram
and Wall 2006). Using the formula derived by Liang and
Nielsen (2014), we set

2
©2Ne(1—m) (1 — et/2Ne)”

ry

where N, is the effective size of the admixed population, m is
the admixture fraction and t is the time of introgression.

Given these values, we can calculate the coefficients of the
function f4(r). L is the transition rate for the neutrality
(s = 0), because lim,_, f;, = L. Again, following (Liang
and Nielsen 2014), the neutral transition rate is given by
the following formula

L = 2N (1 — m)(1 — e ¥/2Ne),
Next, for r = 0 we have f,(0) = L — k, hence
k=L _]?10(0)-

In order to find the last two parameters o and p, there are
two more equations corresponding to r =ry and r = r,.

Denote
L—f(r)
= log| —~ |,

fori =1, 2. Then

_ log(ya/y2)
log(r1/r2) '

and

Al
i3

We validated this approximation by comparing with sim-
ulations and with “forward time” approximation, see supple-
mentary figure S11, Supplementary Material online for an
example. In all the considered scenarios, our approximation
turned out to be very precise.

o =

Simulations

We validated the method using extensive simulations of pop-
ulations of 100,000 diploid individuals over a range of param-
eter values. We varied the selective coefficient s from 0 to 0.1
(0, 0.001, 0.01, 0.05, 0.1) and the admixture fraction m from
0.01 to 0.5 (0.01, 0.05, 0.1, 0.2, 0.5). We let the simulations run
to t=1,000 generations or 0.99 frequency of the selected
allele, whichever came sooner, and we drew samples from
the admixed population at 50, 100, 200, 300, 500, and 1,000
generations. Twenty simulations were run for each parameter
set and 25-75 diploid individuals were sampled per time
point per simulation. The selective coefficient s is specified
for the diploid case, and selection acts additively, meaning
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that a heterozygous individual experiences half the selective
strength.

Simulations were performed using SELAM (Corbett-Detig
and Jones 2016), which is a forward simulator that records the
full local ancestry across the genome. We then converted the
haplotype information generated by SELAM to simulated
genotypes representing the reference panels of the two an-
cestral populations, using the results of a coalescent simula-
tion consistent with the evolutionary history of ancestral
D. melanogaster populations (following Pool et al. 2012;
Corbett-Detig and Nielsen 2017). Specifically, we used the
SMC' coalescent simulator, MaCS (Chen et al. 2008) with
the following command line:

$macs 200 10000000 -i 1 -h 1000 -t 0.0376 -r 0.171 -c 5 86.5
-1 2 100 100 0 -en 0 2 0.183 -en 0.0037281 2 0.000377 -en
0.00381 2 1 -ej 0.00382 2 1 -eN 0.0145 0.2 -s 1

To construct admixed individuals, we applied genotypes
obtained from each MaCS-simulated population to fill in ge-
notype data on the appropriate chromosomes for each an-
cestry type. Pairs of chromosomes were joined to create single
diploid individuals, and then we simulated short-read pileup
data for each variable site by drawing the depth from a
Poisson distribution with mean 2 and the resulting alleles
from a binomial distribution with p equal to the genotype
frequency in the individual sampled at that site and applying
a uniform error rate of 0.01 per allele per site.

We emphasize that users interested in evaluating the util-
ity of this or our previous software packages can produce
similar simulations tailored to their specific evolutionary
models or sequencing and sampling schemes by applying
our method using the LAI simulation packages released in
Schumer et al. (2020).

We then analyzed the simulated reads with AHMM-S, and
specified the values of N, m, and t that were used in each
simulation. We analyzed either 25 or 75 diploid individuals, or
50 pooled chromosomes, depending on experiment. We used
the 4-point approximative method for calculating transition
rates, and included sites in the HMM in a window extending
10% of the chromosome length in each direction of the focal
site. We used the golden section search algorithm and
extracted the site that had the highest likelihood ratio value
as the inferred adaptively introgressed site. For the pooled
samples, only every 100 sites were analyzed, in order to reduce
computational time.

Robustness

The robustness of AHMM-S against misspecification of input
parameter values was evaluated using a subset of the same
simulations that were generated for validation. When running
AHMM-S, we varied population size (10,000 and 1,000,000
instead of 100,000), introgression fraction m and introgression
time t, setting them to 10% and 20% above and below the
true value. Each parameter set was run in 20 replicates.

Simulations for Testing the Effects of Model Violations
We performed simulations to test the effects of continuous
gene flow, segregation in donor population, dominance and
fixation in focal population on performance of AHMM-S in
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estimating position and selective coefficient. All simulations
were performed in 20 replicates. Introgression pulse was set to
0.01 or 0.1, selective coefficient to 0.01 or 0.05. The simulations
were performed as described above, with the following differ-
ences: for continuous gene flow, we set an initial introgression
pulse to 0.01 or 0.1, and then allowed for 1% gene flow for 20
generations or 0.2% gene flow for 100 generations. When
simulating an adaptive allele segregating in the donor popu-
lation, we set the allele frequency to 50% at the time of
introgression. To simulate dominant or recessive selection,
we modified the SELAM selection file to change selection
to work in a completely dominant or recessive way.

Simulating a Small Admixture Pulse

When running simulations with a small admixture pulse
(m =0.001 or 0.0001), there is a strong risk that the adaptively
introgressed site would be lost to drift. In order to counteract
this, we condition our simulations on not being lost, by
restarting SELAM if the site was lost, until we had 20 replicates
for each set of parameters. After this the AHMM-S pipeline
was ran as usual.

Multiple Selected Sites

We tested the ability of AHMM-S to distinguish adaptively
introgressed sites that are located near each other by running
simulations as described above, but with two selected sites
with equal selective strengths at 0.1, 1, 2, and 5 cM distance
from each other. Three parameter sets were used: introgres-
sion fraction m = 0.01, selection s = 0.025 and time t = 500
generations; m = 0.1, s=0.005 and t=200; and m =0.17,
s=0.005 and t=430. The last parameter set corresponds
to the population of D. melanogaster analyzed in this study.
We then analyzed the simulations with AHMM-S and plotted
the inferred selective coefficients and likelihood ratios to de-
termine peak separation.

Detecting Negative Selection

Simulations of introgression followed by negative selection of
an introgressed allele located in the middle of the chromo-
some were performed using SELAM as previously described.
AHMM-S is designed to infer positive selection on the intro-
gressed genotype, and in order to make it detect negative
selection, we converted the genotype identity of the simu-
lated individuals, so negative selection of the introgressed
genotype is interpreted as positive selection of the receiving
genotype. We then converted the simulation files to reads as
before and analyzed it with AHMM-S.

Dobzhansky—Muller Incompatibilities

Simulations of diploid individuals were performed as de-
scribed above for two different scenarios of DMIs. In both
cases, two loci (A and B) had a negative DMI interaction. At
each locus two alleles were present (A0 and A1, BO and B1)
where the integer denotes the ancestral population that con-
tributed the relevant allele. In scenario one, an individual
carrying any combination of alleles that were not from a
single population (ie, A0+B1, or A14B0) had a reduced
fitness (s < 1). This is an example of dominant sign epistasis.

In scenario two, only one specific combination (i.e, A0+B1
but not A14-B0) was selected against (s < 1). In both cases all
other allelic combinations had s = 1. We ran these scenarios
for three values of s: —0.01, —0.05 and -0.1, with a 50% intro-
gression pulse. The two sites were placed on the same chro-
mosome at a distance of 40 cM, where linkage plays little role
in governing outcomes. We then converted the simulations
to reads as previously described and analyzed them using
AHMM:-S. Since DMIs cause negative selection at the inter-
acting loci, and AHMM-S is only designed to handle positive
selection, we changed genotype identities before converting
the simulations, which allowed us to treat the negative selec-
tion at these loci as positive selection and bypass this
limitation.

Drosophila melanogaster data

We applied AHMM-S to a publicly available data set of
D. melanogaster from South Africa and Europe (Lack et al.
2015; Lack et al 2016). We extracted both homozygous and
heterozygous regions for each sample and ran AHMM-S after
supplying the appropriate ploidy for each (i.e, 1 if inbred, 2 if
outbred) as we have done previously (Medina et al. 2018). We
also removed any chromosome arm containing one of the
common chromosomal inversions in this species (Corbett-
Detig and Hartl 2012; Lack et al. 2016). As these assemblies are
generally quite high quality, we used the genotype emissions
function in AHMM to calculate the local ancestry across the
genome (Corbett-Detig and Nielsen 2017). We also supplied a
fine-scale recombination map for this species (Comeron et al.
2012).

Because the direction of introgression is known, that is,
populations with cosmopolitan ancestry have recently back-
migrated into Africa, we scanned specifically for adaptive in-
trogression of cosmopolitan alleles into these predominantly
African populations. We performed 50 simulations of a neu-
tral admixture scenario with the same population parameters
(m=0.17,t = 430, N = 100,000) and used these to determine
a likelihood ratio cutoff that would produce an acceptable
false positive rate. A likelihood ratio > 15 and filtering for
proximity to other higher peaks produced 42 outliers above
this threshold, corresponding to a false positive rate of ~5%
in the D. melanogaster data set. Using simulations, we also
determined that we could distinguish selected sites separated
by at least 2 cM (see section on multiple sites). A GO enrich-
ment analysis was performed on the candidate loci using
Gowinda (Kofler and Schl6tterer 2012). We ran the program
with default parameters and separately included only genes
that either spanned the candidate locus or included genes
located 5 kb upstream or downstream of the locus.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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