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Abstract

One of the most powerful and commonly used approaches for detecting local adaptation in the genome is

the identification of extreme allele frequency differences between populations. In this paper, we present

a new maximum likelihood method for finding regions under positive selection. It is based on a Gaussian

approximation to allele frequency changes and it incorporates admixture between populations. The

method can analyze multiple populations simultaneously and retains power to detect selection signatures

specific to ancestry components that are not representative of any extant populations. Using simulated

data, we compare our method to related approaches, and show that it is orders of magnitude faster than

the state-of-the-art, while retaining similar or higher power for most simulation scenarios. We also apply it

to human genomic data and identify loci with extreme genetic differentiation between major geographic

groups. Many of the genes identified are previously known selected loci relating to hair pigmentation

and morphology, skin and eye pigmentation. We also identify new candidate regions, including various

selected loci in the Native American component of admixed Mexican-Americans. These involve diverse

biological functions, like immunity, fat distribution, food intake, vision and hair development.
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Introduction

The emergence of population genomic data has

facilitated fine-scale detection of regions under

recent positive selection in humans and other

species. There are multiple different methods

for carrying out such selection scans. Some of

these rely on patterns of long-range linkage-

disequilibrium (Sabeti et al., 2007; Voight et al.,

2006), one of the characteristic genomic footprints

left by a selective sweep (Kim and Nielsen,

2004; Kim and Stephan, 2002; McVean, 2007).

However, this pattern fades rapidly over time,

and these methods are, consequently, best suited

for detecting very recent selective sweeps from

de novo mutations. Other techniques, based on
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distortions in the allele frequency spectrum caused

by positive selection, can allow for the detection

of more ancient events, but are generally only

applicable to one population at a time (DeGiorgio

et al., 2016; Fay and Wu, 2000; Fu and Li, 1993;

Huber et al., 2016; Nielsen, 2005; Tajima, 1989).

A different class of methods for detecting

selection involves analyzing patterns of allele

frequency differentiation between populations.

The basic idea is that regions that have

experienced episodes of positive selection will

display frequency differences between populations

that are stronger than what would be expected

under pure genetic drift. For example, one can

compute Wright’s fixation index (FST ) locally

across different regions of a genome, and look for

extreme outliers (Akey et al., 2002; Beaumont

and Balding, 2004; Beaumont and Nichols,

1996). Population differentiation methods can

detect more ancient selective events than linkage

disequilibrium-based methods (Sabeti et al.,

2006), and are sensitive to different types of

positive selection events, including sweeps from a

de novo mutation, sweeps from standing variation,

incomplete sweeps, and adaptive introgression

(Bonhomme et al., 2010; Fumagalli et al., 2015;

Racimo et al., 2017; Yi et al., 2010). Recent

methods have allowed researchers to detect excess

local differentiation on particular branches of a 3-

population tree (Racimo, 2016; Yi et al., 2010),

a 4-population tree (Cheng et al., 2017b) or an

abitrarily large tree (Librado and Orlando, 2018),

albeit without modeling post-split admixture

events.

A generalization of these approaches was

developed by Coop et al. (2010), Günther and

Coop (2013), and Gautier (2015). It involves

the detection of genomically local distortions

from a genome-wide covariance matrix, which

is used as a neutral baseline. An advantage

of this approach is that one can apply it

to an arbitrary number of populations. Other

researchers have used hierarchical Bayesian

models (Foll and Gaggiotti, 2008; Foll et al.,

2014) or principal component analysis (Duforet-

Frebourg et al., 2016; Luu et al., 2017) to model

patterns of population differentiation to identify

local distortions across the genome. Another

method extended single-locus differentiation-

based methods to the analysis of haplotype

differentiation (Fariello et al., 2013). More

recently, Mathieson et al. (2015) developed an

admixture-aware selection test based on a linear

model and applied it to human data. The analysis

took advantage of the fact that present-day

European populations could be modeled as a

mixture of three highly differentiated ancestral

components. Regions of the genome that exhibited

strong deviations from the genome-wide mixture

proportions were therefore strong candidates

for positive selection. Finally, Refoyo-Mart́ınez

et al. (2019) developed a method to test for

selection on an admixture graph, which represents

the history of divergence and admixture events
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among populations. Although useful for detecting

selection in the presence of admixture, it still

requires the user to specify which individuals

belong to which populations, and to infer the

graph in advance.

Here, we introduce a new selection detection

framework that can explicitly model admixture

and detect selection from populations of admixed

ancestries. It can simultaneously compare

arbitrarily many populations and ancestry

components and is encoded in a flexible

framework for testing selection on a specific

lineage or set of lineages. The method allows the

user to identify signals of positive selection via

population differentiation, without relying on

self-reported ancestry or admixture correction to

group individuals into populations. The method

can also determine if a selective event is specific to

a particular population or shared among different

populations.

Unlike previous methods, we fully take

advantage of admixed populations, and we do not

require the user to a priori categorize samples

into populations, or to correct allele frequencies to

account for recent admixture. Thus, the selection

scan does not rely on user-supplied sample

labels or ancestry compositions. The methods

identifies positive selection by searching for loci

showing distortions in the population covariance

matrix, relative to the genome-wide baseline.

It provides a flexible framework to specifically

test for selection on individual components or

sets of components. This functionality allows

researchers to accommodate specific evolutionary

scenarios into the range of testable hypotheses,

including local adaptation, adaptive introgression,

and convergent selection. The method first co-

estimates the population structure of the input

panel and the allele frequencies of the ancestral

admixture compomnents through an unsupervised

learning process (Cheng et al., 2017a), before

testing for selection on the ancestral components

themselves. Researchers can also use the method

to examine estimated population structure

and visualize trees connecting the ancestral

components using plotting functionalities

provided by our software package, Ohana,

as part of the analysis pipeline.

Methods

Basic model

The new method is based on the Ohana

inference framework (Cheng et al., 2017a), which

works with both genotype calls and genotype

likelihoods. In brief, the classical Structure

model (Pritchard et al., 2000) is used to

infer allele frequencies, ancestry components,

and admixture proportions using maximum

likelihood (ML). Then a covariance matrix among

components is inferred using a multivariate

Gaussian distribution while enforcing constraints

imposed by the assumption of a tree structure.

The covariance between leaf nodes is proportional

to the amount of shared phylogentic history

between the nodes. Consider, for example, the
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example of the matrix and corresponding tree in

the left side of Fig. 1. In this tree all branches have

length 0.1 and the tree is rooted in node A. The

covariance between node E and node B is then 0.1,

because B and E share one edge in the path from

A. However, the covariance between node C and

E is 0.2 because they share two edges in common

in the path from A. The covariance matrix, Ω=

{Ωij}, can be converted into a distance matrix, d=

{dij}, using the rule dij =Ωii+Ωjj−2Ωij. Treeness

can then be tested using the four point condition

applied to d.

This system is underdetermined because the

tree can be rooted in any node (see e.g.,

Felsenstein (1985)), and the same joint probability

distribution is obtained no matter which rooting

is chosen. We root the tree in one of the

ancestry components and condition on the allele

frequencies in this component when calculating

the joint distribution of allele frequencies in

the other components. This idea is similar

to Felsenstein’s restricted maximum likelihood

approach (Felsenstein, 1985). We emphasize that

the rooting is arbitrary but that it does not imply

any assumptions about this component actually

being ancestral

We estimate the covariance matrix Ω via ML.

This matrix has size (K−1)×(K−1), where K

is the number of populations assuming a joint

density of allele frequencies given by

P (fj |Ω, µj ,faj)∼N

faj , µj (1−µj)


Ω1,1 ··· Ω1,k−1

...
...

Ωk−1,1 ··· Ω1,k−1



(1)

where faj is the allele frequency in the ancestry

component arbitrarily assigned as ancestral and

fj is a vector of the allele frequencies in the

other K−1 components, at SNP j. µj is the

mean allele frequency for SNP j (averaged over all

components). Notice that this model of joint allele

frequencies is similar to the model implemented in

TreeMix (Pickrell and Pritchard, 2012) which also

uses a Gaussian approximation to allele frequency

change. The full likelihood function is obtained by

taking the product of Eq. (1) over all SNPs in the

genome. The method for optimizing this function

is described in a subsequent section.

Selection model

Following the genome-wide estimation of Ω, a

natural extension of this framework is to detect

SNPs that deviate strongly from the globally

estimated covariance structure. The idea of testing

for deviations from a Gaussian distribution follows

Günther and Coop (2013), but differs in the use

of an enforced tree-structure, an ML inference

framework and fast optimization algorithms,

thereby avoiding some of the computational

challenges associated with Markov Chain Monte

Carlo (MCMC). We also notice that admixture

is incorporated into the inference framework,

thereby enabling the possibility to test for positive
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selection that acted on the ancestral components

of a panel, before interbreeding occurred between

the ancestors of the sampled individuals

Ohana uses a likelihood ratio test that identifies

SNPs with allele frequency patterns that are

poorly described by the genome-wide pattern.

After estimating Ω jointly for all SNPs, each

SNP is then independently tested for deviations

from this model, using a scalar factor introduced

to certain elements of the covariance matrix.

This scalar factor can be introduced in different

ways depending on which selection hypotheses are

tested. In our analyses, we chose to scale the

covariance matrix such that one of its diagonal

values is multiplied by a scalar, α, corresponding

to differences in allele frequency in one of the

ancestry components relative to the rest, e.g.:

Ωα=


Ω1,1 ··· Ω1,k−1

...
...

Ωk−1,1 ··· α·Ω1,k−1

 (2)

The value of α is then estimated via ML

using Eq. (1) (assuming all other values in Ωα

is fixed at the genomic ML estimates) and a

likelihood ratio is formed by testing the hypothesis

of α=1 against the alternative of α>1. A

significantly high likelihood ratio indicates a larger

deviation in allele frequency in a focal component

than expected under the globally estimated null-

model. Fig. 1 shows an example. This test

can also be implemented to test selection on

ancestral non-terminal lineages by multiplying the

corresponding values in the covariance matrix by

a scaling factor.

Under the null-hypothesis, the likelihood ratio

test statistic is expected to approximately follow

a 50:50 mixture between a χ2
1-distribution and a

point mass at zero (Self and Liang, 1987) because

α is bounded at 1, and we use this asymptotic

distribution to calculate p-values.

In summary, we estimate a scaling factor

for one or more components of the covariance

matrix in a multivariate normal model of allele

frequency distribution among populations. For

each candidate SNP, we then compare the

estimated covariance matrix to that obtained

genome-wide, using a likelihood ratio test.

Optimization

To estimate allele frequencies, we assume a

classical stucture/admixture model (Pritchard

et al., 2000) and first estimate Q, a matrix of

admixture proportions for each individual, and F ,

the matrix of allele frequencies for all loci, using

a quadratic programming algorithm described in

full detail in Cheng et al. (2017a) and we refer

the reader to the description in this paper. This

method can also incorporate genotype likelihoods.

Conditional on these estimates of values of fj

and faj for all j, we then maximize the likelihood

in Eq. (1) for Ω. This optimization is done

using the Nelder-Mead simplex method (Nelder

and Mead, 1965). It uses Cholesky decomposition

(Cholesky, 1910) to determine the positive semi-

definiteness of a matrix and to compute matrix
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FIG. 1. Selection hypotheses and their encodings as covariance matrices. In this example, the ancestry component E is
assumed to be the potential target of selection. The entry E:E in the covariance matrix is therefore allowed to deviate from
the globally estimated value.

inverses and determinants. For the initial starting

point, we use sample covariances:

Sc=
1

J

J∑
j

(xj−x̄j)(xj−x̄j)T

xj =


f1
...

fK−1

 x̄j =


fA
...

fA

 (3)

To enforce treeness, instead of using a

costly constrained optimization, we convert the

covariance matrix into a distance matrix, d=

{dij}, which is converted into a tree using

the Neighbor-Joining algorithm (Saitou and Nei,

1987). We then use the covariance matrix induced

by this procedure. For estimating α during a

selection scan for a single SNP, conditionally on

the globally estimated value of Ω, we use a simple

Golden-section search algorithm (Kiefer, 1953).

Simulations

We conducted population genetic simulations

using the forward simulator SLiM 3 (Haller and

Messer, 2019). We consider 3 distinct demographic

models (Fig. 2):

• A basic 4-population tree with no admixture

(Fig. 2a): an ancestral population splits into

4 subpopulations at times 4000, 2000, and

800 generations before present, following the

topology in Fig. 2a. Selection is simulated on

the yellow branch in Fig. 2a. Tests for selection

are conducted for yellow ancestry (i.e. the main

ancestry component in the third branch).

• A 4-population tree with admixture (Fig. 2b):

The same model as in (1), but split times are

shifted backwards in time by 100 generations;

at 100 generations before present, selection is

turned off, and each population is supplanted

by a (1/3,1/3,1/3) mixture of the other three

populations. Tests for selection are conducted

for yellow ancestry (i.e. the most depleted

ancestry component in the third branch).

• A model based on human demography of

Mexican (MXL), Northwestern European

(CEU), CHB (EAS), and African Yoruba

(YRI) populations (Fig. 2c): The model is

based on parameter estimates from Gravel

et al. (2011); Gutenkunst et al. (2009). MXL

is modeled as a (1/2,1/2) mixture of CEU and

6

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sab294/6385247 by guest on 24 O
ctober 2021



“output” — 2021/6/7 — 22:38 — page 7 — #7

Ohana · doi:10.1093/molbev/mst012 MBE

Native American (NA) ancestry. We simulate

selection only in the ancestral NA population

(i.e. no ongoing selection in MXL). We use

Ohana to test for selection in this NA ancestry

component, which is only observed in the

admixed MXL individuals.

In simulations (1) and (2) we assume all

populations are constant in size with Ne=10,000.

For all simulations, we simulate a locus of 2Mbp

with mutation and recombination rates µ=r=

10−8 per bp per generation. In all cases, we

sample 20 diploid individuals from each extant

population (i.e. 160 chromosomes sampled). We

simulate a single selected site occurring within a

±10kbp window of the center of the simulated

locus. In order to simulate selection during

particular time periods, we simulate sweeps

from standing variation (an initial frequency

f), although we consider such low frequencies

(down to f=0.0001) that these should produce

indistinguishable patterns from those produced

by hard sweeps (Przeworski et al., 2005). For

each demographic scenario, we consider 4 different

selection coefficients (s=0, 0.01, 0.02 and 0.05)

and 3 different ranges of starting frequencies

for the selected allele (f in [0.0001,0.001),

[0.001,0.01), and [0.01,0.1)). (Simulations under

model (3) exclude sweeps with f <0.001 because

the ancestral NA population size is too small for

any such variation at that low frequency.) We use

a neutral burn-in phase of 100,000 generations.

For all simulations, as is typical in forward

simulations, we scale times down by a factor of

10, and scale up the selection coefficients and

mutation and recombination rates by a factor of

10, in order to ease computational burden. In

all simulation scenarios we use 1000 independent

replicates. Open-source implementations of each

model are provided at https://github.com/

35ajstern/ohana_simulation_models.

We compared Ohana’s performance to that

of two other state-of-the-art methods: pcadapt

and BayPass (Duforet-Frebourg et al., 2016;

Gautier, 2015). Like Ohana, both methods depend

on some sort of empirical null model. To this

end, we simulated 3 20Mb-long neutral regions

under otherwise the same settings as previously

described, with s=0, in order to generate a

null dataset for calibrating each method. In the

case of Ohana and BayPass, this null dataset

is used to estimate the covariance matrix for

each population; in pcadapt, we append this null

dataset to each region we test for selection (we

do this because the pcadapt package does not

have an equivalent two-step process for calculating

PCs in one region and testing for deviation from

these PCs in a separate region). In all cases,

we filter out SNPs with MAF<0.05 prior to

any analysis. In Ohana, we test for selection in

specific ancestry groups; by contrast, BayPass and

pcadapt test for any significant deviation from

the empirical covariance matrix (BayPass models

population-level covariance, whereas pcadapt
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FIG. 2. Illustration of simulation models. (a) Model 1, a basic model of four-population split with no admixture. (b) Model
2, a four-population split with subsequent admixture. (c) Model 3, a four-population model mimicking human demographic
models. Population size changes in Model 3 are omitted from the visualization for simplicity. Selection is simulated to
operate on the branch that has a larger width.

models individual-level covariance). In this sense

it is important to keep in mind that Ohana

is performing a more specific test for selection,

and can be used to methodologically attribute

selection to a particular ancestral component /

branch.

Results

Simulations
Power to detect selection

We first evaluated the performance of our method

against comparable methods in detecting whether

a locus has evolved under positive selection

(Fig. 3a-c). For all tests we use the empirical

null distribution to find the threshold associated

with 5% false positive rate (FPR). We compute

power as the proportion of simulations with

test statistic exceeding this threshold. For all

three methods, the test statistic was the site

statistic with the maximum value across the whole

2Mbp locus; with Ohana, the test statistic used

was the log-likelihood ratio (testing for selection

in the specified ancestry group); with BayPass,

the test statistic was the ‘XtX’ statistic; and

with pcadapt, the test statistic was the selection

test P-value, using K=3 PCs (since there are

4 ancestral populations in each case). For all

three methods, power increased uniformly with

the value of the selection coefficient (Fig. 3a-c).

However, different demographic scenarios result

in different power levels; e.g., all methods were

better-powered under the simple demographic

scenario (Model 1, Fig. 2a,3a) compared to

selection pre-admixture (Model 1, Fig. 2b,3b) or

in the human demographic model (Model 3, Fig.

2c,3c).

pcadapt was significantly less well-powered than

Ohana in most scenarios e.g., 72% vs 88%

and 90% vs 98% power under moderate and

strong selection, respectively (see Fig. 3a). In

most scenarios, we found Ohana to have power

equivalent to or greater than that of BayPass; e.g.,

in Models 1 and 2, we fail to reject that Ohana

and BayPass have different power curves with 95%
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confidence (Fig. 3a,b). However, in one simulation

scenario, we found Ohana had significantly higher

power than Baypass, under a model of human

demography (Fig. 3c). However, we note that

although BayPass and Ohana have similar power,

Ohana’s test is by design more specific, as it

is testing for selection in a specified ancestry

group; hence power calculations are inherently

more lenient for BayPass than Ohana. In Fig. 3a-

c we show results assuming 0.001≤f <0.01, and

present full results illustrating the entire ROC

curve (i.e., not conditioned on FPR=0.05) and

for other values of f , in Fig. 4 and Figs. S1, S2.

Also notice the overall low power in Fig. 4. The

main reason for this low power is that selection

is acting in a relatively short period in the past,

and that the population has experienced 50%

admixture after selection. The strong admixture

after selection tends to obscure much of the

selection signal.

Efficacy for fine-mapping the causal site

We also considered the performance of Ohana

for fine mapping the position of the causal

site (Fig. 3d-f). We considered the distribution

of the distance between the site of the test

statistics described above (i.e. the locus-wide

max statistic) and the causal site (in the center

of the 2Mbp locus). We plot the empirical

cumulative distribution of these distances for

different values of the selection coefficient under

each demographic model. We found that in cases

where Ohana is well-powered to detect selection,

there is considerable power to narrow the position

of the causal site down to ±10kbp of the max

test statistic (e.g. >40% power for s≥0.01 under

Model 1, and 25% power for s=0.05 under

Models 2 3; see Fig. 3d-f). Interestingly, under

Models 1 and 2, there is similar power to fine-

map sites with moderate and strong selection

(s=0.02 vs 0.05, see Fig. 3d,e); by contrast, under

Model 3, there is significantly higher power to

fine-map sites with strong selection (Fig. 3f); this

dramatic difference may be due to the effects

of demography on the pattern of hitchhiking

surrounding the causal site. In Fig. 3d-f we show

results assuming 0.001≤f <0.01, and present full

results illustrating other values of f , in Figs.

S3-S5.

Computational efficiency

In addition to comparing power to detect

selection, we compared computational efficiency of

Ohana and BayPass, which we showed in previous

sections was the most competitive method in

terms of statistical power (Fig. 3g). We found

that Ohana was >250X faster than BayPass

(mean selection scan runtimes: Ohana, 0.626 secs.

(±0.008 secs.); BayPass, 168 secs. (±2 secs.); N=

1,000 replicates). We reiterate that our power

comparison revealed Ohana to generally have

comparable power to that of BayPass, despite

multiple orders of magnitude improvement in

computational efficiency.
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FIG. 3. Simulation tests of Ohana performance and efficiency in detecting and mapping selected sites. (a-c) Power to detect
selection relative to two comparable methods, BayPass and pcadapt. Error bars are 95% CIs; (d-f) efficacy of Ohana to
fine-map the causal site; (g) computational efficiency compared to that of BayPass. Error bars are 5-95th percentiles.

Analysis of real data

We identified regions in the genome that are

likely to have been under the influence of positive

selection using a merged dataset containing

several population panels from phase 3 of the

1000 Genomes Project (Consortium et al., 2015).

We randomly selected 64 genomes from each of

4 populations from the 1000 Genomes project:

the British from Great Britain (GBR), the Han

Chinese from Beijing (CHB), the Yoruba Africans

(YRI) and the admixed Mexican-Americans from

Los Angeles (MXL) (the number 64 was chosen

because it was the size of the smallest panel).

We only included variable sites with no missing

data and a minimum allele frequency of 0.05

across the entire merged panel. In total, we

analyzed 5,601,710 variable sites across the

autosomal genome. We inferred genome-wide

allele frequencies and covariances for the latent

ancestry components as described in the Methods

section, using K=4. To scan for covariance

outliers, we performed four hypothesis-driven

scans, in which we specifically searched for

selection separately in each of the four inferred

ancestry components in our dataset (Fig. 5, Table

1).

After running these scans, we queried the

CADD server (Rentzsch et al., 2019) to

obtain functional, conservation and regulatory

annotations for the top candidate SNPs, including

SIFT (Sim et al., 2012), PolyPhen (Adzhubei

et al., 2013), GERP (Davydov et al., 2010),
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f = 0.001 f = 0.01

s= 0.01

s= 0.02

s= 0.05

TP
R

FPR

FIG. 4. ROC curves for Ohana vs. state-of-the-art methods, assessed using simulations with various values of the initial
allele frequency at the beginning of selection (f) and different selection coefficients (s). Here the demographic model used
was our human model (with selection in the Native American lineage), vs. other demographic models considered (i.e. basic
tree without and with admixture, Figs. S1 and S2, respectively.

PhastCons (Siepel et al., 2005), PhyloP (Pollard

et al., 2010) and Segway (Hoffman et al., 2012)

annotations, so as to find the changes most

likely to be disruptive. We discuss some of these

below. We also queried the GTEx cis-eQTL

database (Lonsdale et al., 2013), the UK Biobank

GeneATLAS (Canela-Xandri et al., 2018), and the

GWAS catalog (MacArthur et al., 2017), to look

for trait-associated SNPs. We particularly focus

on SNPs that have both high log-likelihood ratios

in favor of positive selection (LLRS>15) and high

CADD scores in favor of functional disruption

(>10).

Below, we describe some of the top SNPs with

high LLRS and their surrounding regions, for

those cases in which available genic, expression
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FIG. 5. Inferred unrooted tree of latent ancestry
components for the analysis including the CHB, YRI, MXL
and GBR genomic panels. We label each component by the
population in which it is maximized, but emphasize that the
components and the populations are not equivalent entities.

or regulatory information can provide us some

clue as to the possible organismal function that

may have been affected by the selective event.

We particularly focus on the Native American

ancestry scan (Figure 6), as few selection scans

have been performed in this population, but also

briefly summarize the results from the other scans.

European ancestry scan

Results for the top 30 loci in the European

ancestry scan are presented in Table S1. Most loci

have been previously shown to be under selection

in Europeans populations, including SLC45A2,

SLC24A5, BNC2, the OCA2/HERC2 region, the

LCT/MCM6 region and the TLR region (Barreiro

et al., 2009; Bersaglieri et al., 2004; Mathieson

et al., 2015; Vernot and Akey, 2014; Voight

et al., 2006). We notice that, in several cases,

the presumed causal SNP previously identified in

the literature coincides with the SNP with the

strongest selection signal. This is the case, for

example, for rs1426654 (SLC24A5) (Kimura et al.,

2009; Lamason et al., 2005) and for rs16891982

(SLC45A2) (Branicki et al., 2008). This suggest

that the top SNPs for other loci, for which the

causal SNPs are not yet known, may be good

candidates for further tests of functional effects.

East Asian ancestry scan

We also performed a scan where we sought to

recover SNPs that were candidates for selection in

the ancestry component that is prevalent among

our CHB samples. Results for the top 30 loci

in this scan are in Table S2. Here, we also

recover several candidate regions that have been

previously reported in East Asian selection scans,

including ABCC11, POU2F3, ADH1B, FADS1

and TARBP1 (Liu et al., 2018; Ohashi et al.,

2011; Peng et al., 2010; Refoyo-Mart́ınez et al.,

2019; Vernot and Akey, 2014). Here, as in the

previous scan, the top-scoring SNPs also tend to

have the strongest phenotypic associations. For

example, the highest scoring SNP (rs17822931)

is the well-known missense variant in ABCC11,

which is involved in sweat and earwax production

(Yoshiura et al., 2006).

Yoruba / ancestral non-African ancestry scan

Because our algorithm relies on an unrooted

tree of the ancestry components (Fig. 5), we

cannot distinguish between SNPs under positive

selection in the terminal branch leading to the

Yoruba / Sub-Saharan Africans and the ancestral

non-African branch (Table S3). Nevertheless,

more careful study of the allele frequencies of

these SNPs in other populations may serve to

distinguish among these scenarios in the future.
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As in the the other ancestry scans, we also

retrieve several genes that have been previously

reported in positive selection studies. For example,

the highest-scoring SNP is a missense variant in

SLC39A4 (rs1871534) that has been reported to

be under selection in Sub-Saharan Africa and to

be causal for zinc deficiency (Engelken et al.,

2014).

Native American ancestry scan

The Native American ancestry scan yielded

several novel candidates for positive selection

(Table S4). As this ancestry has been less studied

than the other aforementioned populations in the

selection scan literature, we highlight some of the

more interesting regions here.

The top SNP (rs140736443) is located in an

intron of LINC00871. This SNP does not have a

high CADD score (= 1.125), but is very close to

a SNP (rs10133371) with a very high LLRS (=

16.54) and CADD score (= 15.99). This SNP is

also intronic but is highly conserved in primates

(PhastCons = 0.972) and is located in a GERP

conserved element (P = 1.92e-21). LINC00871

is a long non-coding RNA gene that has been

associated with number of children born (Barban

et al., 2016), although the specific trait-associated

SNP in that study does not have a high LLRS.

This gene also contains a suggestive association to

longevity in females (Zeng et al., 2018), although

this study was under-powered to retrieve genome-

wide significant associations.

The third top SNP (rs2316155) has a low

CADD score (= 0.633) but is located near two

SNPs with high LLRS (rs1466182, rs1466183) that

overlap a regulatory region (ENSR00000088366)

and have high CADD scores (= 16.8 and 19.5,

respectively). Both of these SNPs have high

PhastCons conservation scores across primates,

mammals and vertebrates, and both overlap a

GERP conserved element.

The sixth top SNP (rs10508343) has a low

CADD score but lies very close to another SNP

(rs17143255) with a high LLRS and a very high

CADD score (= 14.16). The latter is an intergenic

SNP overlapping a GERP conserved element

between LINC00708 and GATA3, which has been

shown to lead to abnormal hair shape and growth

in mice when mutated (Kaufman et al., 2003).

Interestingly, SNPs overlapping LINC00708 have

been recently associated with hair shape in a

GWAS of admixed Latin Americans (Adhikari

et al. 2016). There is also a high-LLRS SNP in

this region that is significantly associated with

the response to treatment for acute lymphoblastic

leukemia (rs10508343) (Yang et al., 2009).

The seventh top SNP (rs16959274) is a GTEx

eQTL for GOLGA8A for tibial artery and skeletal

muscle, and for GOLGA8B in pancreas. These two

genes are members of the same gene family, and

code for an auto-antigen localized in the surface

of the Golgi complex (Eystathioy et al., 2000).

The tenth top SNP (rs12580697) is a GTEx

eQTL for TMTC1 in whole blood and has

13

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sab294/6385247 by guest on 24 O
ctober 2021



“output” — 2021/6/7 — 22:38 — page 14 — #14

Cheng et al. · doi:10.1093/molbev/mst012 MBE

a moderately high CADD score (= 8.676).

TMTC1 codes for an endoplasmic reticulum

transmembrane protein that is involved in calcium

homeostasis (Sunryd et al., 2014).

The eleventh top SNP (rs75607199) has a low

CADD score but lies near three other SNPs

(rs41325445, rs4901738 and rs59250732) with

almost equally high LLRS and high CADD

scores (= 13.49, 19.7 and 12.67, respectively).

All of these SNPs are intronic and overlap

OTX2-AS1, a long non-coding RNA gene. The

SNP with the highest CADD score (rs4901738)

is located in a GERP conserved element and

has high PhastCons conservation scores across

primates and mammals (>0.98). They all lie

upstream of OTX2, coding for a developmental

transcription factor implicated in microphtalmia

(Ragge et al., 2005), retinal dystrophy (Vincent

et al., 2014) and pituitary hormone deficiency

(Diaczok et al., 2008). In mice, this gene has

been found to be involved in the embryonic

development of the brain (Boncinelli et al., 1993),

photoreceptor development (Nishida et al., 2003)

and susceptibility to stress (Peña et al., 2017).

The fourteenth top SNP (rs78441257) has a

fairly high CADD score (= 12.72) and lies in a

GERP conserved element of the 3’ UTR of LRAT.

This gene is implicated in retinal dystrophy

(Thompson et al., 2001) and retinitis pigmentosa

(Sénéchal et al., 2006).

The fifteenth top SNP (rs1919550) is a GTEx

eQTL for FBXO40 in whole blood, but does not

have a high CADD score. However, it lies near a

SNP (rs9813391) with a high LLRS that leads to

a nonsynonymous change (R145Q) in ARGFX -

a homeobox gene - and another SNP (rs4676737)

with both a high LLRS and high CADD score (=

14.07) overlapping a repressor region in an intron

of FBXO40. The latter SNP is a GTEx eQTL

for IQCB1 in fibroblasts, muscular esophagus and

thyroid. IQCB1 is associated with Senor-Loken

syndrome (Otto et al., 2005), a ciliopathic eye

disorder.

The twenty-second top SNP (rs4946567) is

an eQTL of TBC1D32 in cerebellar brain.

This SNP has a high CADD score (= 11.02)

and is conserved across vertebrates (vertebrate

PhyloP = 0.916, vertebrate PhastCons = 0.747).

Interestingly, the region in which it is located

also harbors signature of selection in Yucatan

miniature pigs (Kim et al., 2015; Kwon et al.,

2019). TBC1D32 plays a role in cilia assembly (Ko

et al., 2010) and may be involved in ciliopathic

congenital abnormalities, including midline cleft,

microcephaly, and microphthalmia (Adly et al.,

2014).

The twenty-third and twenty-fourth top SNPs

(rs5758430, rs4822061) are close to each other

and lie in a large region with several high-LLRS

SNPs. They are both linked GTEx eQTLs to

several genes in a variety of different tissues.

They are also both significantly associated with

several traits related to body fat, food intake and

white blood cells in the UK Biobank GeneATLAS
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(P <10−8). Although these SNPs do not have

particularly high CADD scores, there are several

neighboring linked high-LLRS, high-CADD SNPs

with significant associations to the same traits,

including splice site and missense mutations.

We also find two significantly-associated SNPs

in the GWAS catalog in this region (P <

10−8): rs4822024 is associated with Vitiligo (Jin

et al., 2012) and rs13054099 is associated with

neuroticism (Nagel et al., 2018).

We also repurposed our aforementioned neutral

simulations under human demography to estimate

the false discovery rate (FDR) of these selected

variants in aggregate. We estimate the expected

number of SNPs to exceed a threshhold logLR

T , assuming a genome length of 3×109 bp,

a simple LD structure of 2Mbp blocks, and

ascertaining the SNP with the top logLR within

each block. Under this approach, we find that

at the cutoffs of top 1, 5, 10, 20, and 30 SNPs,

the FDR is approximately 0.0% (i.e., up to

simulation precision), 15.1%, 22.6%, 30.1%, and

42.6%, respectively. We encourage users of the

program to do similar simulations for estimating

false discovery rates for inferences made on their

specific data sets.

Signals of selection in Mexican ancestry
(MXL)

We wanted to verify that our method was picking

up signals of selection that were supported by

alternative methods not explicitly relying on

single-SNP patterns of population differentiation.

For this, we used the program CLUES (Stern

et al., 2019), which relies on a likelihood approach

based on reconstructed approximation to the

ancestral recombination graph along the genome

(Table S5). We applied CLUES using parameters

corresponding to the demographic history of

Mexican-ancestry (MXL) individuals in the 1000

Genomes Project (i.e., effective population size

inferred by the method Relate (Speidel et al.,

2019)) to the set of hits identified using Ohana

with selection acting on the Native American

branch. We found that 9 out of the 10 tested

SNPs showed significant (p<0.05) signals of

positive selection in MXL, under the asymptotic

interpretation of the log-likelihood ratio statistics,

supporting the evidence that these top hits in

Native American ancestry have been targets of

selection.

To learn more about the mode and time-frame

of selection in these loci, we also used CLUES

(Stern et al., 2019) to estimate the trajectory of

allele frequency changes for the 10 loci in the

Native American component mentioned in Table

1 (Figure S6). In all cases, the estimated allele

frequency trajectory was compatible with relative

old selection leading to alleles with current day

intermediate frequencies, typically between 0.4

and 0.6, i.e incomplete sweeps. The fact that we

only detect incomplete sweep might be related to

the filtering procedure we have used to eliminate

SNPs with small MAF . The fastest change in

allele frequency is found for the SNP in CSMD1
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(s71523639) which currently is at frequency close

to 0.5 but was at a frequency of approx. zero

700 generation ago, suggesting relative strong

selection on a de novo mutation.

Discussion

We describe a new modeling framework that

can detect signals of positive selection on

ancestry components, using allele frequency

patterns across admixed populations. It models

admixture explicitly and works with an arbitrary

number of populations with or without admixed

ancestries. It also does not rely on labeling of

samples into particular populations, and allows

for testing of different positive selection models

reflecting different historical adaptive hypotheses.

It is in many ways similar to the Bayesian

methods by Coop et al. (2010) and Günther and

Coop (2013) in the structure of the likelihood

function. The major differences being the use

of optimization of the likelihood function in

Ohana instead of MCMC used by Coop et al.

(2010) and Günther and Coop (2013), which

provides some computational advantages. The

methods also differ in other ways, including the

enforcement of a tree-structure in Ohana, the

use of ancestry components to model selection

in hypothesized ancestral populations in Ohana,

and the functionality to perform branch-specific

detection of selection, or detection of selection in

multiple branches if one has an a priori selection

hypothesis one wants to test.

The run-time complexity of our method is

linear in the number of markers, but we still

recommend a high-performance cluster to be used

in a typical genomic analysis. With parallelization,

a selection scan takes <10 minutes to analyze

a 6 Mbp genome for <10 ancestry components

using 100 cores. An example of how to perform

this parallelization can be found on the project’s

wiki page on GitHub: https://github.com/

jade-cheng/ohana

Our method works by testing for selection in

specific components of the ancestry covariance

matrix. We also explored what would occur if we

used a likelihood model in which the ancestry

covariance matrix was multiplied by a scalar,

so as to find “global” candidates for selection

rather than testing for selection in particular

ancestries. We found however, that this was

not an optimal way to detect candidates for

selection, as it is biased towards finding many

variants in highly drifted populations, likely

because the excess variance in the Wright-Fisher

process is not well modelled by the multivariate

Gaussian assumption, especially at the boundaries

of fixation and extinction.

We note, however, that the latent ancestry

components inferred by Ohana and other similar

programs cannot be strictly interpreted as

corresponding to existing populations (now or in

the past) and that the labels we assign to them

(“European”, “Asian”, “African”, etc.) are largely

for convenience. This is especially true when the
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studied individuals are not descended from recent

admixture events among highly differentiated

populations, so care should be taken in the

interpretation of the identity of these components.

We refer the reader to Lawson et al. (2018);

Mathieson and Scally (2020) for more in-depth

studies and discussions on the assumptions and

limitations of latent ancestry inference methods.

We note that there is currently some debate

in the field on the possibility that FST outliers

could be caused by negative selection in various

forms (see e.g, Johri et al. (2020), Schrider (2020),

Matthey-Doret and Whitlock (2019)). Although it

has been argued that such an effect is unlikely to

explain FST outliers in real data (Schrider (2020),

Matthey-Doret and Whitlock (2019)), our method

will be similarly challenged by this effect, as the

information used is very similar to that of FST

outlier scans.

When specifically testing for candidates for

selection in the ”European”, ”East Asian” and

”Sub-Saharan African” components, we identified

several well-known candidates under positive

selection, including OCA2, SLC24A5, SLC45A2,

ABCC1 and SLC39A4. Many of our top scoring

SNPs were also previously known to be causal

for particular traits, as in the case of rs17822931

in ABCC11 in East Asians, rs16891982 in

SLC45A2 in Europeans, rs1426654 in SLC24A5

in Europeans and rs1871534 in SLC39A4 in Sub-

Saharan Africans.

Our scan for positive selection in the Native

American ancestry component of Latin Americans

yielded several novel candidates for adaptation in

the human past. We found signatures of selection

near genes involved in fertility (LINC00871),

hair shape and growth (LINC00708), immunity

(GOLGA8A / GOLGA8B and IRAK4), vision

(OTX2 and LRAT), the nervous system

(MDGA2) and various ciliopathies (IQCB1

and TBC1D32). Several of the highest-scoring

SNPs in the candidate regions are known to be

cis-eQTLs to their nearby genes, as is the case

for rs12580697 / TMTC1 (involved in calcium

homestasis) and rs4676737 / IQCB1 (involved in

ciliopathies). We also found individual SNPs with

high likelihood ratio scores in favor of selection

that are associated with a variety of phenotypes,

including rs12426688 (fat percentage), rs10508343

(response to leukemia treatment), rs34670506

(insomnia), and the cluster of high-scoring

SNPs that include rs5758430 and rs4822061,

among other SNPs. This particular cluster is

especially interesting, as the SNPs in the region

are associated with a variety of traits related

to body fat distribution, food intake and white

blood cells, suggesting a possible underlying

phenotype related to these traits that may have

driven an adaptive event. Estimates of the FDR

suggest that the lion’s share of these SNPs are

selected, especially towards the higher end (e.g.,

the top 8 SNPs have an FDR of <10%).
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We provide a list of functional annotations for

all the SNPs with high LLRS (>15) within a 2Mb

region surrounding each of the top genome-wide

SNPs, including CADD, conservation, regulatory

and protein deleteriousness scores, which we hope

will guide future functional validation studies in

these regions of the genome (Table S6).

In conclusion, Ohana provides a fast and

flexible selection-detection and hypothesis-testing

framework. It is easy to use and has in-built

visualization functionalities to explore patterns on

a genome-wide and locus-specific scale. We believe

it will be a useful tool for biologists aiming to

study positive selection and understanding the

genomic basis of adaptation, particularly in cases

where demographic histories are complex or not

well characterized.

Supplementary Material

Supplementary tables S1-S6 and figures S1-S5

are available at Molecular Biology and Evolution

online (http://www.mbe.oxfordjournals.org/).
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FIG. 6. Top 5 annotated peaks in each of the ancestry-specific selection studies. MXL-specific = scan for selection in Native
American ancestry of MXL. GBR-specific = scan for selection in European ancestry of GBR. CHB-specific = scan for
selection in CHB ancestry of CHB. YRI-specific = scan for selection in Yoruba African ancestry or ancestral non-African
ancestry. We analyzed 5,601,710 variable sites across the autosomal genomes. We inferred genome-wide allele frequencies
and covariances as described in the Methods section. We applied a likelihood model for each SNP by rescaling all variances
and covariances by a scalar multiplier α. Descriptions of each candidate region are in Table 1. LLR = Log-likelihood ratio
score.
24

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sab294/6385247 by guest on 24 O
ctober 2021



“output” — 2021/6/7 — 22:38 — page 25 — #25

Ohana · doi:10.1093/molbev/mst012 MBE

Table 1. Top 10 most differentiated SNPs from each of the ancestry-specific scans. LLRS = log-likelihood ratio score for
positive selection.

chr pos rsid LLRS target ancestry nearest gene

5 33951693 rs16891982 22.085902 European SLC45A2
15 48426484 rs1426654 19.707464 European SLC24A5

15 28356859 rs1129038 19.290553 European HERC2

15 28495956 rs12912427 18.270213 European HERC2

9 16792200 rs10962596 15.819739 European BNC2

1 1385211 rs1312568 15.066101 European ATAD3C

2 136407479 rs1446585 14.957582 European R3HDM1

2 136616754 rs182549 14.629386 European MCM6

1 204784969 rs3940119 14.393216 European NFASC

4 38798648 rs5743618 14.38681 European TLR1

16 48258198 rs17822931 23.271759 CHB ABCC11
16 48375777 rs6500380 22.474103 CHB LONP2

1 234635790 rs2175591 20.95541 CHB TARBP1

4 100142780 rs75721934 20.453247 CHB LOC100507053

11 61579427 rs72643557 20.114033 CHB FADS1

11 120154631 rs12224052 19.696284 CHB POU2F3

21 43974948 rs228088 19.518001 CHB SLC37A1

11 133043841 rs79802711 19.157192 CHB OPCML

5 128016573 rs79478220 18.476104 CHB FBN2

19 51441759 rs11084040 18.158963 CHB KLK5

14 46745012 rs140736443 32.730697 Native American LINC00871
9 82968379 rs6559543 27.584847 Native American LINC01507

16 80619307 rs2316155 27.399123 Native American LINC01227

14 21647765 rs77549780 27.355769 Native American LINC00641

12 14189549 rs12425115 25.867367 Native American GRIN2B

10 8150713 rs10508343 25.609772 Native American GATA3

15 34936250 rs16959274 25.424824 Native American GOLGA8B

8 4490837 rs71523639 24.59957 Native American CSMD1

1 14301862 rs72640512 24.455822 Native American PRDM2

12 29817716 rs12580697 23.967094 Native American TMTC1

8 145639681 rs1871534 11.906794 Yoruba / Ancestral Non-African SLC39A4

5 178626609 rs6869589 11.541667 Yoruba / Ancestral Non-African ADAMTS2

15 29427400 rs10152250 11.48232 Yoruba / Ancestral Non-African FAM189A1

1 1106112 rs6670693 11.447873 Yoruba / Ancestral Non-African TTLL10

4 3666494 rs58827274 11.341367 Yoruba / Ancestral Non-African LOC100133461

17 2631985 rs4790359 11.118134 Yoruba / Ancestral Non-African PAFAH1B1

9 136769888 rs2789823 11.031687 Yoruba / Ancestral Non-African VAV2

6 169656029 rs6930377 10.824098 Yoruba / Ancestral Non-African THBS2

17 29350769 rs8073072 10.794224 Yoruba / Ancestral Non-African RNF135

5 173642871 rs10067518 10.787147 Yoruba / Ancestral Non-African HMP19
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