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a b s t r a c t

The ancestral recombination graph (ARG) contains the full genealogical information of the sample,
and many population genetic inference problems can be solved using inferred or sampled ARGs. In
particular, the waiting distance between tree changes along the genome can be used to make inference
about the distribution and evolution of recombination rates. To this end, we here derive an analytic
expression for the distribution of waiting distances between tree changes under the sequentially
Markovian coalescent model and obtain an accurate approximation to the distribution of waiting
distances for topology changes. We use these results to show that some of the recently proposed
methods for inferring sequences of trees along the genome provide strongly biased distributions of
waiting distances. In addition, we provide a correction to an undercounting problem facing all available
ARG inference methods, thereby facilitating the use of ARG inference methods to estimate temporal
changes in the recombination rate.

© 2021 Published by Elsevier Inc.
1. Introduction

At each position of the genome, the relationship among in-
ividuals in a sample can be characterized by a tree, known as
genealogical or coalescent tree, and it can be regarded as the

esult of a generative process called the coalescent (Kingman,
982a,b). In the presence of recombination, the genealogies can
ary at different positions of the genome, and the ancestral re-
ombination graph (ARG) — the structure which fully describes the
oint distribution of coalescent trees along the genome — provides
ll the information about the genealogical history of a sample,
ncluding the locations of recombination events. The full ARG can
e also seen as the result of generative process, the coalescent
ith recombination (Griffiths, 1981; Hudson, 1983). Although it

s straightforward to simulate under this process (Hudson, 2002;
elleher et al., 2016), inferring ARGs from population genetic
ariation data is a very challenging problem. Indeed, much al-
orithmic work has been done on reconstructing parsimonious
istories with recombination (Hein, 1993; Gusfield et al., 2003;
ong and Hein, 2003; Wang et al., 2001; Lyngsø et al., 2005;
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Gusfield, 2014; Ignatieva et al., 2020) and sampling ARGs un-
der the coalescent with recombination (Griffiths and Marjoram,
1996; Fearnhead and Donnelly, 2001; Jenkins and Griffiths, 2011;
Rasmussen et al., 2014).

The coalescent with recombination (Griffiths, 1981; Hudson,
1983) was originally formulated as a stochastic process over
time, but Wiuf and Hein (1999) later showed that it can also
be reformulated as a spatial process along the genome. This
spatial process is not Markovian, because of the long-range de-
pendency caused by coalescence events between distant ge-
nomic positions. However, constraining the spatial process to be
Markovian (McVean and Cardin, 2005; Marjoram and Wall, 2006;
Hobolth and Jensen, 2014) has led to useful, practical approxima-
tions of the full coalescent with recombination while retaining
accuracy in many aspects. The first Markovian approximation is
called the sequentially Markovian coalescent (SMC) (McVean and
Cardin, 2005), and a subsequent improvement (Marjoram and
Wall, 2006), known as SMC’, incorporates an additional class of
genealogical events.

The Markovian approximations have successfully been applied
in the estimation of changes in population size (e.g., Li and Durbin
(2011), Schiffels and Durbin (2014) and Terhorst et al. (2017)), by
representing the genealogy as states of a Hidden Markov Model
(HMM), whose transition probabilities then can be calculated
under the SMC or SMC’ assumptions. However, these methods
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Fig. 1. Difficulties in genealogy inference. (a) Different types of recombination events, in which type 1 does not change the tree, type 2 and 3 change the tree but
not the topology, and type 4 changes the topology; (b) Illustration of tree transition omission in tree inference methods, in which the shaded trees are harder to
detect as they are not produced by topology changes.
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are restrained to at most analyzing a few individuals due to
the exploding size of the state space with increasing sample
size. However, recently several different methods for inferring
genealogies in models with recombination have been proposed
(e.g., Rasmussen et al. (2014), Kelleher et al. (2019) and Speidel
et al. (2019)). ARGweaver by Rasmussen et al. (2014) is capa-
ble of full posterior sampling of ARGs under the SMC or SMC’
approximations using Markov Chain Monte Carlo (MCMC), but
becomes prohibitively slow for large sample sizes (typically >
0). Relate by Speidel et al. (2019) and tsinfer by Kelleher et al.

(2019) are capable of inferences for larger sample sizes, but do
not perform full posterior sampling. Both methods only provide a
single estimate of the tree topology, although Relate also samples
oalescent times using MCMC, conditionally on the estimated
ocal coalescent tree topology.

.1. Motivation

In the SMC, the SMC’, and the full coalescent process with
ecombination, the waiting distance d until the next recombi-
ation event along the chromosome is exponentially distributed,
onditionally on the total tree length L(T ) of the current tree T :

r (d | T ) =
ρ

2
L(T ) exp

[
−

ρ

2
L(T )d

]
, (1)

where L(T ) is in coalescent unit of 2Ne generations and ρ

2 =

Ner denotes the population-scaled recombination rate per bp.
MC’ provides a closer approximation to the full coalescent with
ecombination than does SMC, as the former allows for events in
hich a lineage splits off and coalesces back to the same branch
type 1 in Fig. 1a). This type of event occurs with particularly
igh probability when the sample size is small (Wilton et al.,
015). However, it does not change the genealogy (second tree in
ig. 1b) and is therefore not sampled in ARGweaver or reported
n the output of msprime simulations (Kelleher et al., 2016).
 c

35
herefore, the waiting distance between adjacent trees in ARG-
eaver or msprime will not follow the exponential distribution
hown in (1). Furthermore, there are two additional types of
vents (type 2 and 3 in Fig. 1a) that may occur in both SMC
nd SMC’ approximations where some coalescence times change,
ut not the tree topology Hudson and Kaplan (1985) considered
ifferent recombination types along this line and studied their
tatistical properties, and Hein et al. (2004) refined this classifica-
ion). Hence, the waiting distance distribution until next topology
hange is even further biased away from (1), and similar problem
as explored in the context of incompatibility by Hudson and
aplan (1985). To quantify and better visualize these phenomena,
e perform simulations using the SMC’ mode in msprime, with
= 8,Ne = 1 × 104, µ = r = 1 × 10−8. We then divide

rees into bins based on their total branch lengths, and collect
aiting distances until tree and topology changes. We compare
he empirical distribution to the exponential distribution using
he midpoint of the tree length to represent each bin (Figs. 2a
nd 2b).
To use the waiting distance distribution between trees inferred

y SMC or SMC’ models, or as reported by common simulation
rograms such as msprime, for understanding patterns of recom-
ination, or for validating the accuracy of inference methods or
imulation methods, it is necessary to understand the distribution
f waiting distances between tree topology changes induced by
vents of type 1, 2, or 3 in Fig. 1a.
In this paper we derive the waiting distance distributions for

he SMC’ model and we use these results to benchmark three
ommon methods for inferring tree topologies along the length
f a chromosome: ARGweaver (Rasmussen et al., 2014), Relate
Speidel et al., 2019), and tsinfer (Kelleher et al., 2019). We also
llustrate the utility of the results, when used in combination with
ethods for inferring trees, for inferences regarding temporal

hanges in recombination rate.
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Fig. 2. Uncorrected distributions of waiting distance until tree or topology changes. The distribution of simulated waiting distances until tree or topology
changes (solid lines) is compared to the exponential distribution in (1) (circles). Green, blue, and red colors correspond the total tree length, L(T ), falling within
3 × 104, 5 × 104), [5 × 104, 7 × 104), and [7 × 104, 9 × 104), respectively. (a) The waiting distance until tree change differs from the simple exponential distribution
n (1). (b) The waiting distance until topology change differs even more from the simple exponential distribution in (1).
P
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. Theoretical results

.1. Notation

Suppose we have a sample of size n from a diploid population
ith constant effective population size Ne (all times mentioned
enceforth will be in coalescent units of 2Ne generations). We use
i to denote the length of the epoch when there are i ancestral
ineages in the coalescent tree and introduce the notation

σi = Tn + Tn−1 + · · · + Ti, for i = 2, . . . , n,

n+1 = 0,

to denote the times when coalescence occurs. We let An(t) denote
the number of lineages at time t ancestral to the sample and
define it to be right-continuous. There are 2n − 2 branches in
the coalescent tree before the most recent common ancestor
(TMRCA) since there are n leaf nodes and n − 2 internal nodes
created by coalescent events prior to the TMRCA, and we index
them arbitrarily by b = 1, . . . , 2n − 2. For each branch b, we use
t lb and tub to denote its lower and upper times, respectively (see
Fig. 3).

2.2. Waiting distance distribution until next tree change

The waiting distance until next tree change can be modeled
as a waiting distance in a thinned Poisson process, where we
color the events differently depending on whether they produce
identical trees. Since the intensity of the un-thinned process
is just the product of the tree length and the recombination
rate, the only thing which needs to be identified is the thin-
ning parameter, the probability of a recombination leading to a
tree change. A simpler version of the problem was previously
solved using the same idea for the waiting distance distribution
until a TMRCA change for n = 2 (Carmi et al., 2014) and

= 3 (https://github.com/scarmi/arg_tree_change_distance_n3/
lob/main/TreeChangeDistances.pdf).
Now suppose the current tree is T , and the recombination

appened on branch b at time t , we have the following result
regarding the probability of this recombination not changing the
tree under the SMC’ model (a type 1 event):
36
Proposition 1. Under the SMC’, the probability of a recombination
not to change the tree, given its breakpoint on branch b at time t on
tree T is:

(tree unchanged | b, t, T ) =
1
i

+ eit
[

i∑
j=An(tub )+1

Pij

]
, (2)

here

i = An(t),

Pii = −
1
i
e−iσi ,

Pij = exp

(
−iσi −

i−1∑
k=j+1

kTk

)
1
j
[1 − e−jTj ].

Note that when the lower index is larger than the upper index
in a summation, that sum is here defined to be 0.

By a change in tree, we here mean a change in at least one
coalescence time, but the topology may stay the same. This result,
which is proved in the Appendix, shows that the probability
of a recombination event being detected depends on where it
occurs in the tree. We will also later show that this result fa-
cilitates inferences of temporal changes in recombination rates
using inferred ARGs. We also note that under the SMC model
P(tree unchanged | b, t, T ) = 0.

The unconditional probability of type 1 event on a branch
b under the SMC’ can then be found by integrating over the
breakpoint time, t , with respect to its conditionally uniform dis-
tribution on the branch:

Proposition 2. Under the SMC’, the probability of a recombination
happening on branch b not to change the tree is:

P(tree unchanged | b, T ) =
1

tub − t lb

An(t lb)∑
i=An(tub )+1

p(i)b , (3)

where

p(i)b =
1
i

[
Ti + (eiσi − eiσi+1 )

i∑
j=An(tub )+1

Pij

]
.

https://github.com/scarmi/arg_tree_change_distance_n3/blob/main/TreeChangeDistances.pdf
https://github.com/scarmi/arg_tree_change_distance_n3/blob/main/TreeChangeDistances.pdf
https://github.com/scarmi/arg_tree_change_distance_n3/blob/main/TreeChangeDistances.pdf
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Fig. 3. Illustration of the notation used. (a) An(t), Ti and σj are illustrated for an example genealogy with sample size n = 5. (b) A recombination event occurs on a
ranch at time t , and the corresponding upper and lower times of the branch are tub = σ4 and t lb = σ5 .
t
c
p
n
t
a
t
f

p
t
b

Now, the probability of a recombination event not changing
the tree can simply be given by a weighted sum of the probabil-
ities in (3) over all branches in the tree, weighting by the branch
lengths:

Theorem 1 (Tree-unchanging Probability). Under the SMC’, the
probability of a recombination event not changing the tree is:

P(tree unchanged | T ) =

2n−2∑
b=1

[
tub − t lb
L(T )

]
P(tree unchanged | b, T )

=
1

L(T )

2n−2∑
b=1

An(t lb)∑
i=An(tub )+1

p(i)b .

The waiting distance between tree changes under the SMC’ is
then determined as follows.

Theorem 2 (Waiting Distance Distribution Until Next Tree Change).
Under the SMC’, the distribution of waiting distance until next tree
change given the current tree T is given by:

pr (d | T ) =
ρ

2
α(T )L(T ) exp

[
−

ρ

2
α(T )L(T )d

]
, (4)

where

α(T ) = 1 − P(tree unchanged | T ).

Note that the waiting distance until next tree change is still ex-
ponential, but the intensity is reduced by a factor of α(T ). Fig. 4a
s generated similarly to Fig. 2, except that we are collecting
aiting distances of L(T )α(T ) in bins, to show that this expres-

sion indeed accurately describes the waiting distance distribution
observed in msprime simulations using the SMC’ mode.

2.3. Waiting distance distribution until next topology change

Although inferring every tree change would be desirable for
ARG inference, it is notoriously hard, especially when scaling
to hundreds, or thousands of genomes. Two of the most recent
genealogy inference programs, Relate and tsinfer, use efficient
approximations to infer genomic series of trees. However, infer-
ences of tree changes are mostly guided by information regarding
topologies, and neither method is designed to detect changes in
the tree that does not involve a change in topology. For bench-
marking and comparing these, and other programs, is therefore
37
also important to understand the distribution of waiting distances
between changes in topology.

To derive the waiting distance distribution between topology
changes, we will again use the idea of a thinned process. The
quantity of interest is the probability that a recombination event
will change the tree topology. This probability can be calculated
in very similar manner to that in Theorem 2, except that there
are two more types of events of recombination and coalescent to
consider (type 2 and 3) so some extra bookkeeping is needed. In
Appendix A.3, we prove the following result:

Theorem 3 (Topology-unchanging Probability). For a given branch
b in tree T , let b′ denote the branch that b coalesces with and let c
denote their parental branch. Then, under the SMC’, the conditional
probability that a recombination event will not change the tree
topology given the current tree T is

P(topology unchanged | T )

=
1

L(T )

2n−2∑
b=1

[ An(t lb)∑
i=An(t lb′ )+1

p(i)b,1 +

An(t lb′ )∑
i=An(tub′ )+1

p(i)b,2

]
,

where

p(i)b,1 =
1
i

[
Ti + (eiσi − eiσi+1 )

( An(t lb′ )∑
j=An(tub′ )+1

Pij +
i∑

j=An(tuc )+1

Pij

)]
,

p(i)b,2 =
1
i

[
2Ti + (eiσi − eiσi+1 )

(
2

i∑
j=An(tuc )+1

Pij −
An(t lc )∑

j=An(tuc )+1

Pij

)]
.

Unlike the result for the distribution of waiting distance un-
il next tree change, the waiting distance to the next topology
hanging event is not exponentially distributed because of the
ossibility of recombination events that change the tree but do
ot change the topology. Such events will change the intensity of
he process so that it is no longer time-homogeneous. Arriving at
n exact formula is, therefore, difficult. However, we notice that
here is a rather accurate approximation method based on the
ollowing empirical observation:

The product of total tree length and the topology-changing
robability remains approximately the same after a
opology-unchanging recombination. This makes intuitive sense
ecause a tree with larger total branch length is likely to have
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Fig. 4. Corrected distributions of waiting distance until tree or topology changes. The distribution of simulated waiting distances until tree or topology changes (solid
lines) is compared to the corrected distribution in (4) or (5) (circles). Green, blue, and red colors indicate thinned intensities, L(T )α(T ) in (a) and L(T )β(T ) in (b),
hat are in the intervals [3 × 104, 5 × 104), [5 × 104, 7 × 104), and [7 × 104, 9 × 104), respectively. In (a), notice that the waiting distance until tree change matches
the corrected exponential distribution of (4). Similarly, in (b), the waiting distance distribution until topology change matches the corrected exponential distribution
of (5).
long deep branches, which favor type 1, 2 and 3 recombinations,
leading to a lower topology-changing probability.

Note in Fig. 5 that while both the tree length, L(T ), and the
probability of a topology changing recombination event, β(T ) =

−P(topologyunchanged | T ), after a topology-unchanging event,
have relatively high variance, the variance of their product is
much smaller. In other words, a recombination+coalescent event
that increases the total tree length will decrease the probability
that the next event is topology changing and vice versa. The
et effect is that the product of the two, L(T )β(T ), is much

more stable than either are individually. Using this concentration
relation we can build an approximation for the distribution of
waiting distances until next topology change:

The distribution of waiting distance until next topology change
can be approximated by:

pr (d | T ) =
ρ

2
β(T )L(T ) exp

[
−

ρ

2
β(T )L(T )d

]
, (5)

where

β(T ) = 1 − P(topology unchanged | T ).

This approximation also agrees well with the simulations in
Fig. 4b, showing waiting distances until topology changes con-
ditioning on L(T )β(T ) falling in certain bins.

Our code for calculating α(T ) and β(T ) using tskit format is
available here: https://github.com/YunDeng98/Correction_proba
bility_calculation.

3. Applications

3.1. Benchmark of tree inference methods

One application of the theory introduced in this article is the
use for benchmarking of some ARG/genealogy inference methods.
If the method detects every tree/topology change, or if it samples
from a correct posterior distribution of waiting distances, then
the waiting distance between adjacent trees should be described
by (4) or (5).

To investigate this, we did simulations with realistic choices of
parameters (µ = r = 1 × 10−8, Ne = 1 × 104 with 8 haplotypes)
and used ARGweaver, Relate, and tsinfer to infer the genealogy.
Then we compared the distribution of waiting distance between
38
adjacent trees in the output with our theoretical prediction (4) or
(5).

Although ARGweaver does not report some tree transitions
caused by type 1 recombination (Fig. 6a), causing the waiting
distance distribution to be different from the exponential distri-
bution in (1), it is indeed capable of doing approximately poste-
rior sampling of tree changes following (4) (Fig. 6d). However, we
observe a very small bias which might be due to the discretization
in ARGweaver.

However, both Relate and tsinfer are undersampling trees.
Under realistic choices of mutation and recombination rate of
µ = r = 1 × 10−8 with 8 haplotypes, the waiting distance
distribution in tsinfer is quite different from (5), suggesting that
tsinfer undersamples topology changes and overestimates waiting
distances (Fig. 6e). Relate has an even stronger tendency to under-
sample topology changes and to overestimate waiting distances
(Fig. 6f).

3.2. Inference of temporal variation of recombination rate

It is generally hard to study the evolution of recombination
rate through time without specific reference to ARGs. After sam-
pling the ARG of a region using a program that accurately samples
tree changes, such as ARGweaver, a naive way of estimating
time-specific recombination rates is to count the number of re-
combination happening within each time interval, divided by the
total branch length appearing in the interval. In order to test
this procedure, we simulated data under a mutation rate of µ =

1 × 10−8 and a constant recombination rate r = 1 × 10−8 with
8 haplotypes of 1Mb. However, the naive estimation procedure
provides biased estimates in at least two aspects (Fig. 7): first,
the inferred rates are significantly lower than the true values;
second, the inferred trajectory is not constant, leading to a false
conclusion of temporal changes in the recombination rate.

The bias mainly comes from the fact that type 1 recombi-
nations do not result in tree change at all and are unreported
by ARGweaver, which instead reports recombination events ac-
cording to (2). As the probability of a type 1 event depends on
the number of lineages, this induces the appearance of temporal
recombination rate changes. The intuition here is that because
there are many more coalescence events happening recently,

where branches tend to be shorter and where there are more of
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Fig. 5. Concentration of L(T )β(T ) after a topology-unchanging recombination. Simulations were performed using msprime for n = 20 and n = 50, and fold-changes
f L(T ), β(T ) and L(T )β(T ) after topology-unchanging recombinations were calculated. Although neither L(T ) nor β(T ) remains stable after a topology-unchanging
ecombination, their product remains approximately constant with high probability. This relation is shown here empirically with simulation results using sample
ize n = 20 (a) and n = 50 (b).
Fig. 6. The waiting distance distribution in ARGweaver, tsinfer and Relate. Simulations are done in msprime using n = 8,Ne = 1 × 104, µ = r = 1 × 10−8 and
he distribution of waiting distances between adjacent trees in the outputs (solid lines) is compared to (1) and (4)/(5) (circles). Green, blue, and red mean the
onditioned quantity to be within (3 × 104, 5 × 104), (5 × 104, 7 × 104), (7 × 104, 9 × 104). The conditioned quantities are L(T ) in (a), (b) and (c), L(T )α(T ) in (d),
nd L(T )β(T ) in (e) and (f). (a) The waiting distance distribution in ARGweaver is not well-characterized by the simple exponential distribution (1); (b) The waiting
istance distribution in tsinfer is biasing away from the exponential distribution even more; (c) The waiting distance distribution in Relate is significantly biasing
way from the exponential distribution; (d) The correction (4) provides a much better fit to the waiting distance distribution in ARGweaver; (e) The correction (5)
s closer to the empirical distribution in tsinfer, but the correction does not completely solve the problem; (f) The correction (5) on Relate helps little.
i

hem, there are fewer opportunities for ‘‘silent" recombinations,
hile in the older deep lineages many more recombinations can
e missed.
 i
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The way to correct this is to introduce ‘‘effective counts"
nstead of naive counts of the recombination events in each time
nterval. For a recombination happening on branch b at time t on
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Fig. 7. The time specific recombination estimation before and after correction
sing (2). The naive estimation without correction (blue line) is biased sig-
ificantly from the true values (green line) and falsely indicates a decrease
n recombination rates the past, whereas the correction leads to a much
ore reasonable estimate (red line) which is only slightly underestimating the

ecombination rate. 500 ARGs of 8 haplotypes are sampled from ARGweaver and
divided into 5 groups, and each estimate is obtained as the average over 100
ARGs from each group. The error bars represent 1 SE among the five estimates.

tree T , instead of counting it as one, we assign it the following
weights:

1
P(tree changed | b, t, T )

=
1

1 − P(tree unchanged | b, t, T )
.

After applying this correction, we observe that the estimate is
significantly closer to the true values (Fig. 7) and no false evidence
of temporal changes in the recombination rate is observed. In real
data analyses it is, therefore, possible to infer changes in recombi-
nation rates using a combination of ARGweaver inferred trees and
the correction derived here. We note that we did not test this
procedure on simulated data with time-varying recombination
rates because there is no available program to efficiently do such
simulations.

4. Discussion

In this paper, we derived analytical formulae for the distri-
bution of waiting distance to the next tree change and close
approximations for the waiting distance to the next topology
change under the SMC’ model. We use these results to show
that tree transition omission in ARG/genealogy inference methods
is a common problem, causing biases away from the SMC/SMC’
assumption that the waiting distance is exponentially distributed
with intensity equal to the product of recombination rate and tree
length. This challenges the use of such methods for making in-
ferences about recombination rates and recombination rate evo-
lution. The waiting distance between adjacent trees reported by
ARGweaver is close to what is predicted by theory, and matches
that expected for a valid Bayesian ARG sample, suggesting the
potential of using ARGweaver to estimate recombination rates in
a more principled way with this correction. In fact, recombination
map estimation was mentioned in Rasmussen et al. (2014), and
using the SMC’ mode and applying the correction should help.
A recent method, iSMC (Barroso et al., 2019), uses the pairwise
 b

40
ARG to estimate recombination maps, and we anticipate that it
should also benefit from using the correction. However, neither
Relate nor tsinfer provides easily interpretable waiting distances
between trees, and under realistic setting in humans, under-
counts topology changes and overestimates waiting distances. We
emphasize here that this tree missing phenomenon can impact
other aspects of inference as well; e.g., because Relate misses
many trees, the inference result of marginal trees is actually an
average of a series of trees, likely leading to biased age estimates
of the most recent and ancient coalescence events.

We also highlight the use of ARG inference in understanding
the temporal variation of recombination rates, by estimating the
time-specific recombination rates using the correction proposed
here, which can serve as a tool for understanding the evolution
of recombination rates. However, we note that the constant pop-
ulation size demography model may not apply to most scenarios
for real data, which will affect the calculation of the probability
in (2). We argue that this problem can still be solved because
the probabilities can still be calculated with by incorporating
the underlying demography model, and the extension is straight-
forward when the demographic model only involves a single
population with changing size. Also, ARGs could be sampled using
ARGweaver-D (Hubisz et al., 2020) instead of ARGweaver under a
on-standard demography model. Finally, we note that impor-
ance sampling approaches could be used to adjust for model
isspecifications.
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ppendix. Proofs

.1. Proof of Proposition 1

In order for the tree to not change after a recombination,
he recombination needs to start from breakpoint t and end at
ime τ on the same branch b. At time τ , there will be An(τ )
ineages, and only one of them will be the original branch b.
he probability density of starting from t and ending at τ while
ot changing the tree is thus 1

An(τ )
p(τ | t), where p(τ | t)

corresponds to the probability density of the rejoining time τ

given the recombination time t . Then we need to integrate over
τ since essentially any time older than t and younger than the
upper end of b could be a possible choice. The probability for a
recombination to start at t on branch b can be thus calculated as:

P(tree unchanged | b, t, T )

=

∫ tub

t

1
An(τ )

p(τ | t)dτ

=

∫ tub

t
exp

[
−

∫ τ

t
An(s)ds

]
dτ .

To simplify the notation we define i = An(t) so that t ∈ [σi+1, σi].
ence, we are basically considering the case when there are
lineages left when the recombination happened. Because the
ecombination end time τ ranges from t to tub , we can simply
reak it into intervals, so that in each one of them the number
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f remaining lineages, An(τ ), is a constant, which leads to:

P(tree unchanged | b, t, T )

=

∫ σi

t
exp

[
−

∫ τ

t
An(s)ds

]
dτ

+

i−1∑
j=An(tub )+1

∫ σj

σj+1

exp
[
−

∫ τ

t
An(s)ds

]
dτ .

Note that for the first term, An(s) = i always holds because τ is
constrained to [t, σi] and s is constrained to [t, τ ], which leads to
the following simplification:∫ σi

t
exp

(
−

∫ τ

t
An(s)ds

)
dτ =

∫ σi

t
exp

(
−i(τ − t)

)
dτ

=
1
i

−
1
i
e−iσieit

=
1
i

+ Piieit .

or the other terms, note that we can break the inner integral
nto 2 parts, [t, σj+1] and [σj+1, τ ], such that the first part is
ndependent from τ and the second part has An(s) as a constant
j. Further leveraging that An(s) is a piece-wise constant function,
we have∫ σj

σj+1

exp

(
−

∫ τ

t
An(s)ds

)
dτ

= exp

(
−

∫ σj+1

t
An(s)ds

)[∫ σj

σj+1

exp

(
−

∫ τ

σj+1

An(s)ds

)
dτ

]

= exp

(
−i(σi − t) −

i−1∑
k=j+1

kTk

)∫ σj

σj+1

exp

(
−j(τ − σj+1)

)
dτ

= eit exp

(
−iσi −

i−1∑
k=j+1

kTk

)
1
j
(1 − e−jTj )

= Pijeit .

Combining these terms, we find

P(tree unchanged | b, t, T ) =
1
i

+ eit
[

i∑
j=An(tub )+1

Pij

]
,

which completes the proof of Proposition 1.

A.2. Proof of Proposition 2

The probability of type 1 event on a branch b, which is the
probability that a recombination does not change the tree condi-
tioned on it happening on branch b, can be found by integrating
over the breakpoint time, t , with respect to its conditionally uni-
form distribution on the branch. As in the proof of Proposition 1,
we can break [t lb, t

u
b ] into multiple intervals as

P(tree unchanged | b, T ) =
1

tub − t lb

×

∫ tub

t lb

P(tree unchanged | b, t, T )dt

=
1

tub − t lb

An(t lb)∑
i=An(tub )+1

∫ σi

σi+1

P(tree unchanged |

× b, t, T )dt,
41
and using Proposition 1 for the integrand gives∫ σi

σi+1

P(tree unchanged | b, t, T )dt =
1
i

[
Ti + (eiσi+1 − eiσi )

×

i∑
j=An(tub )

Pij

]
= p(i)b ,

hus yielding

(tree unchanged | b, T ) =
1

tub − t lb

An(t lb)∑
i=An(tub )+1

p(i)b .

.3. The proof of Theorem 3

For each branch b in the tree T , we denote by b′ the lineage
hat coalesces with it, and denote the parental lineage of b and b′

y c (Fig. 8).
We note that the steps of this proof are essentially the same as

or the proof of Theorem 1, which is to find P(topologyunchanged
b, T ) by integrating P(topology unchanged | b, t, T ), and then
se the law of total probability to get P(topologyunchanged | T ).

The probability calculation will now take into account recombi-
nations of type 1, 2 and 3, instead of just type 1, yielding

P(topology unchanged | b, T )

=
1

tub − t lb

∫ tub

t lb

P(topology unchanged | b, t, T )dt

=
1

tub − t lb

[(∫ t l
b′

t lb

+

∫ tu
b′

t l
b′

)
P(topology unchanged | b, t, T )dt

]

=
1

tub − t lb

[ ( An(t lb)∑
i=An(t lb′ )+1

+

An(t lb′ )∑
i=An(tub′ )+1

)

×

∫ σi

σi+1

P(topology unchanged | b, t, T )dt

]
. (6)

Here, without loss of generality, we assume that the lower end
of b is younger than that of b′ (i.e., t lb ≤ t lb′ ), and note that tub = tub′

since b and b′ coalesce (Fig. 8). The reason why we break the
range into [t lb, t

l
b′ ] and [t lb′ , tub′ ] is explained in the caption of Fig. 8.

irst case: t ∈ [σi+1, σi] ⊂ [t lb, t
l
b′ ] In this scenario, there are 3

ossible ways in which a recombination lineage can coalesce to
etain the original topology: the first is to join branch b in [t, t lb′ ],
he second is to join branch b or b′ in [t lb′ , tub′ ], and the third is to
oin branch c in [tub′ , t lc]. They lead to

(topology unchanged | b, t, T )

=

∫ t l
b′

t

1
An(τ )

p(τ | t)dτ +

∫ tu
b′

t l
b′

2
An(τ )

p(τ | t)dτ

+

∫ tuc

t lc

1
An(τ )

p(τ | t)dτ
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Fig. 8. Illustration of the additional notational conventions. Here we use b and
b′ to denote a pair of coalescing lineages, with b being the one with lower
end, and c to denote the parental lineage of them. The reason why we need to
break the proof of Theorem 3 into two cases is that in [t lb, t

l
b′ ], the recombining

lineage must rejoin b for the topology not to change, while in [t lb′ , tub′ ] it can
rejoin either b or b′ without changing the topology.

=

∫ t l
b′

t
exp

(
−

∫ τ

t
An(s)ds

)
dτ  

P1

+ 2
∫ tu

b′

t l
b′

exp

(
−

∫ τ

t
An(s)ds

)
dτ  

P2

+

∫ tuc

t lc

exp

(
−

∫ τ

t
An(s)ds

)
dτ  

P3

, (7)

and, using similar ideas to those in the proof of Proposition 1, we
can simplify the summands as follows:

P1 =

∫ σi

t
exp

(
−

∫ τ

t
An(s)ds

)
dτ

+

i−1∑
j=An(t lb′ )+1

∫ σj

σj+1

exp

(
−

∫ τ

t
An(s)ds

)
dτ

=
1
i

+ Piieit +

i−1∑
j=An(t lb′ )+1

Pijeit

P2 = 2

An(t lb′ )∑
j=An(tub′ )+1

∫ σj

σj+1

exp

(
−

∫ τ

t
An(s)ds

)
dτ

= 2

An(t lb′ )∑
j=An(tub′ )+1

Pijeit

P3 =

An(t lc )∑
j=An(tuc )+1

∫ σj

σj+1

exp

(
−

∫ τ

t
An(s)ds

)
dτ

=

An(t lc )∑
u

Pijeit .

j=An(tc )+1

42
Plugging these expressions back into (7), we obtain

P(topology unchanged | b, t, T )

=
1
i

+ Aiieit +

i−1∑
j=An(t lb′ )+1

Pijeit + 2

An(t lb′ )∑
j=An(tub′ )+1

Pijeit

+

An(t lc )∑
j=An(tuc )+1

Pijeit

=
1
i

+

i∑
j=An(tuc )+1

Pijeit +

An(t lb′ )∑
j=An(tub′ )+1

Pijeit ,

nd we can easily do the integration with respect to t to obtain∫ σi

σi+1

P(topology unchanged | b, t, T )dt

=
1
i

[
ti +

(
Aii +

i−1∑
j=An(t lb′ )+1

Pij + 2

An(t lb′ )∑
j=An(tub′ )+1

Pij +
An(t lc )∑

j=An(tuc )+1

Pij

)

× (eiσi − eiσi+1 )

]

=
1
i

[
ti +

( An(t lb′ )∑
j=An(tub′ )+1

Pij +
i∑

j=An(tuc )+1

Pij

)
(eiσi − eiσi+1 )

]

= p(i)b,1.

econd case: t ∈ [σi+1, σi] ⊂ [t lb′ , tub′ ] In this case there are 2
possible ways in which a recombining lineage can coalesce to
retain the original topology: the first is to join branch b or b′ in
t lb′ , tub′ ], and the other is to join branch c in [tub′ , t lc]. Hence,

(topology unchanged | b, t, T )

=

∫ tu
b′

t

2
An(τ )

p(τ | t)dτ +

∫ tuc

t lc

1
An(τ )

p(τ | t)dτ

= 2
∫ tu

b′

t
exp

(
−

∫ τ

t
An(s)ds

)
dτ +

∫ tuc

t lc

exp

(
−

∫ τ

t
An(s)ds

)
dτ

= 2

[ ∫ σi

t
exp

(
−

∫ τ

t
An(s)ds

)
dτ

+

i−1∑
j=An(tub′ )+1

∫ σj

σj+1

exp

(
−

∫ τ

t
An(s)ds

)
dτ

]

+

An(t lc )∑
j=An(tuc )+1

∫ σj

σj+1

exp

(
−

∫ τ

t
An(s)ds

)
dτ

= 2

(
1
i

+ Piieit +

i−1∑
j=An(tub′ )+1

Pijeit
)

+

An(t lc )∑
j=An(tuc )+1

Pijeit

= 2

(
1
i

+

i∑
j=An(tub′ )+1

Pijeit
)

+

An(t lc )∑
j=An(tuc )+1

Pijeit ,
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a
nd we can integrate with respect to t again to obtain∫ σi

σi+1

P(topology unchanged | b, t, T )dt

=
1
i

[
2ti +

(
2Aii + 2

i−1∑
j=An(tub′ )+1

Pij +
An(t lc )∑

j=An(tuc )+1

Pij

)
(eiσi − eiσi+1 )

]

=
1
i

[
2ti +

(
2

i∑
j=An(tuc )+1

Pij −
An(t lc )∑

j=An(tuc )+1

Pij

)
(eiσi − eiσi+1 )

]
=: p(i)b,2.

Now, we can plug these results into (6) to get

P(topology unchanged | b, T )

=
1

tub − t lb

[ An(t lb)∑
i=An(t lb′ )+1

p(i)b,1 +

An(t lb′ )∑
i=An(tub′ )+1

p(i)b,2

]
,

which leads to the following conclusion using the law of total
probability:

P(topology unchanged | T ) =

2n−2∑
b=1

tub − t lb
L(T )

× P(topology unchanged | b, T )

=
1

L(T )

2n−2∑
b=1

[ An(t lb)∑
i=An(t lb′ )+1

p(i)b,1

+

An(t lb′ )∑
i=An(tub′ )+1

p(i)b,2

]
.
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