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Summary
We present a full-likelihood method to infer polygenic adaptation from DNA sequence variation and GWAS summary statistics to quan-

tify recent transient directional selection acting on a complex trait. Through simulations of polygenic trait architecture evolution and

GWASs, we show the method substantially improves power over current methods. We examine the robustness of the method under

stratification, uncertainty and bias in marginal effects, uncertainty in the causal SNPs, allelic heterogeneity, negative selection, and

low GWAS sample size. The method can quantify selection acting on correlated traits, controlling for pleiotropy even among traits

with strong genetic correlation (
��rg�� ¼ 80%) while retaining high power to attribute selection to the causal trait. When the causal trait

is excluded from analysis, selection is attributed to its closest proxy. We discuss limitations of the method, cautioning against strongly

causal interpretations of the results, and the possibility of undetectable gene-by-environment (GxE) interactions. We apply the method

to 56 human polygenic traits, revealing signals of directional selection on pigmentation, life history, glycated hemoglobin (HbA1c), and

other traits. We also conduct joint testing of 137 pairs of genetically correlated traits, revealing widespread correlated response acting on

these traits (2.6-fold enrichment, p ¼ 1.5 3 10�7). Signs of selection on some traits previously reported as adaptive (e.g., educational

attainment and hair color) are largely attributable to correlated response (p ¼ 2.9 3 10�6 and 1.7 3 10�4, respectively). Lastly, our joint

test shows antagonistic selection has increased type 2 diabetes risk and decrease HbA1c (p ¼ 1.5 3 10�5).
Introduction

Genome-wide association studies (GWASs) have shown

that many human complex traits spanning anthropo-

metric, behavioral, metabolic, and many other domains

are highly polygenic.1–3 GWAS findings have strongly

indicated that the action of purifying and/or stabilizing

selection acts pervasively on complex traits.4–7 Some

work has also utilized biobank data to measure the fitness

effects of phenotypes by using direct measurements of

reproductive success.8 However, there are few, if any, vali-

dated genomic signals of directional polygenic adaptation

in humans.

Several factors have contributed to this uncertainty.

Chief among them, polygenicity can allow adaptation to

occur rapidly with extremely subtle changes in allele fre-

quencies.9 Classic population genetics-based methods to

detect adaptation via nucleotide data have historically

been designed to detect selective sweeps with strong selec-

tion coefficients unlikely to occur under polygenic archi-

tecture.10 Polygenic adaptation, after a shift in the fitness

optimum, can occur rapidly while causal variants only un-

dergo subtle changes in allele frequency.11 After a transient

period during which the mean of the trait changes direc-

tionally, a new optimum is reached and the effect of selec-

tion will then largely be to reduce the variance around the

mean.12 However, identifying the genomic footprints of

the transient period of directional selection is of substan-

tial interest because it provides evidence of adaptation.
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To this end, the advent of GWASs has ushered in a series

of methods that take advantage of the availability of allele

effect estimates by aggregating subtle signals of selection

across association-tested loci. For example, some methods

(e.g., the QX test) compare differences in population-

specific polygenic scores—an aggregate of allele fre-

quencies and allele effect estimates—across populations

and test whether they deviate from a null model of genetic

drift.13 Other methods have generalized this test, e.g., to

identify and map polygenic adaptations to branches of

an admixture graph.14 Whereas the aforementioned

methods exploit between-population differentiation to

detect polygenic adaptation, another class of methods is

based on within-population variation. For example, selec-

tion scans based on singleton density score (SDS) have

demonstrated utility in detecting polygenic adaptation

via the correlation of SNPs’ effect estimates and their

SDSs.15 Another test looks for dependence of derived allele

frequencies (DAF) on SNP effect estimates.16

Several powerful tests for selection were developed to

take advantage of recent advances in ancestral recombina-

tion graph (ARG17) and whole-genome genealogy infer-

ence. Such methods enjoy better power in detecting

selection because the ARG, if observed directly, fully sum-

marizes the effects of selection on linked nucleotide data.

We note that several methods, notably ARGweaver,18 infer

the strictly defined ARG; by contrast, methods such as

Relate19 infer a series of trees summarizing ancestral his-

tories spanning chunks of the genome. For example, the
, USA; 2Department of Statistics, University of Oxford, Oxford, UK; 3David

epartment of Integrative Biology, UC Berkeley, Berkeley, CA 94703, USA;

n Journal of Human Genetics 108, 219–239, February 4, 2021 219

mailto:ajstern@berkeley.edu
https://doi.org/10.1016/j.ajhg.2020.12.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2020.12.005&domain=pdf


TX test estimates changes in the population mean poly-

genic score over time by using the coalescent tree at a poly-

morphic site as a proxy for its allele frequency trajectory;

the sum of these trajectories weighted by corresponding

allelic effect estimates forms an estimate of the polygenic

score’s trajectory.20 Speidel, et al. (2019) also designed a

non-parametric test for selection based on coalescence

rates of derived- and ancestral-allele-carrying lineages

calculated empirically from the coalescent tree inferred

by Relate.19 However, these methods ultimately treat the

coalescent tree as a fixed, observed variable, where it is

actually hidden and highly uncertain. Furthermore, most

methods infer the tree under a neutral model and thus pro-

vide biased estimates of the genealogy under selection.

To address these issues, we recently developed a full-

likelihood method, CLUES, to test for selection and esti-

mate allele frequency trajectories.21 The method works

by stochastically integrating over both the latent ARG

with Markov Chain Monte Carlo and the latent allele fre-

quency trajectory with a dynamic programming algorithm

and then using importance sampling to estimate the likeli-

hood function of a focal SNP’s selection coefficient, cor-

recting for biases in the ARG due to sampling under a

neutral model.

Beyond the issue of statistical power, tests for polygenic

adaptation can in general be biased when they rely on

GWASs containing uncorrected stratification. For example,

several groups found strong signals of height adaptation in

Europe;13–15,22–24 later, it was shown that summary statis-

tics from the underlying meta-analysis (GIANT [Genetic

Investigation of ANthropometric Traits]) were systemati-

cally biased because of uncorrected stratification, and

subsequent tests for selection on height failed to be repro-

duced via properly corrected summary statistics.20,25,26

However, beyond this case, the extent to which other sig-

nals of polygenic selection may be inflated by uncorrected

stratification is an open question. Here, we investigate the

robustness of the new likelihood method to uncorrected

stratification and compare it to another state-of-the-art

method (trait SDS [tSDS]), showing that our likelihood

method is less prone to bias but has substantially improved

power.

Another issue faced by current methods to detect poly-

genic adaptation is confounding due to pleiotropy. For

example, direct selection on one trait may cause a false

signal of selection on another, genetically correlated trait.

While a variant of the QX test has been proposed for the

purpose of controls for pleiotropy, this method relies on

signals of between-population differentiation to test for se-

lection and is not directly applicable to test multiple traits

jointly.24

Here, we present a full-likelihood method (Polygenic

Adaptation Likelihood Method [PALM]) that uses popula-

tion DNA sequence data and GWAS summary statistics to

estimate direct selection acting on a polygenic trait. We

demonstrate robustness by exploring potential sources of

bias, including uncorrected GWAS stratification. We also
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introduce a variant on ourmethod, which controls for plei-

otropy by testing R2 traits for selection jointly. We show

our method not only fully controls for this bias but retains

high power to distinguish direct selection from correlated

response, even in traits with strong genetic correlation

(up to 80%), and has unique power to detect cases of

antagonistic selection on genetically correlated traits. We

explore the behavior of the test when traits with causal

fitness effects are excluded to illustrate limitations and

proper interpretation of these selection and correlated

response estimates.
Material and methods

Model
Linking SNP effects to selection coefficients

Let b be the effect of a SNP on a trait. We model the selection

coefficient acting on this SNP by using the Lande approxima-

tion27 szbu, where u is the selection gradient, the derivative

of fitness with respect to trait value. If b is measured in pheno-

typic standard deviations, then u is the so-called selection inten-

sity. Chevin et al. (2008) showed that a linked neutral SNP effec-

tively undergoes selection with stagzrs
ffiffiffiffiffi
pq

p
=
ffiffiffiffiffiffiffiffi
p0q0

p
, where the

neutral ‘‘tag’’ SNP has frequency p0 ¼ 1� q0 and genotypic corre-

lation r to a SNP with selection coefficient s and allele fre-

quencies p and q ¼ 1� p.28 Applying this principle to the multi-

variate Lande approximation, we find that stagzbtagu, where

btag ¼ b$r
ffiffiffiffiffi
pq

p
=
ffiffiffiffiffiffiffiffi
p0q0

p
is the marginal effect of the tag SNP,

assuming no linkage disequilibrium (LD) between the tag SNP

and any other causal SNP.

So long as the effect size is moderate and the population is dis-

placed significantly from its optimal trait value, the Lande approx-

imation is an accurate model for the allelic dynamic of polygenic

adaptation under stabilizing selection on short timescales

(Figure S3B). Even when the population is close to its optimal

trait value (i.e., at �90% mean absolute fitness), the Lande model

has %15% relative error, with more moderate error at higher

minor allele frequencies (MAFs), where SNPs are more likely to

be ascertained (Figure S3B). As the population reaches stabilizing

selection at equilibrium, relative error of the Lande model be-

comes more pronounced.

Inferring the selection gradient with a full-likelihood model

Our likelihood model builds heavily on Stern et al. (2019), which

developed importance sampling approaches for estimating the

likelihood function of the selection coefficient acting on a SNP,

LSNPðsÞ:21 Let bðiÞbe the effect of SNP i on the trait. On the basis

of these SNP-level selection likelihoods, we model the likelihood

function for the selection differential acting on a trait as the prod-

uct of the SNP likelihoods evaluated at selection coefficients under

the Lande approximation:

LðuÞ¼
YM
i¼1

LSNP
i

�
bðiÞu

�
; (Equation 1)

where M is the number of causal SNPs. We provide details for

calculating this likelihood function with an importance sampling

approach based on Stern et al. (2019) in Appendix A.21 Given this

likelihood function, we estimate u by using its maximum-likeli-

hood estimate. This model is used by our so-called marginal test,

PALM.
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Fitness effects of multiple traits

To model fitness effects of multiple traits jointly, here, we propose

a multivariate extension of the Lande approximation that links

pleiotropic SNP effects to the selection coefficient. Let b be a vector

of a particular SNP’s effects on d distinct traits. We assume the se-

lection coefficient acting on this SNP follows a multivariate

version of the Lande approximation,27

sz
Xd
j¼1

bjuj; (Equation 2)

where u now is a vector of selection gradients for each of the d

traits. The results of Chevin et al. (2008) apply directly given

this approximation for the selection coefficient, and we now ex-

press the likelihood of the selection gradient by using Equation

2: LðuÞ ¼ QM
i¼1L

SNP
i ðbuðiÞuÞ. We can solve for the maximum-likeli-

hood estimate of u by jointly using standard optimization. This

model is used by our joint test, J-PALM.
Simulations
Pleiotropic polygenic trait architecture

We sample effect sizes jointly for d ¼ 23 polygenic traits with pre-

viously estimated SNP heritability and genetic correlations.29,30

We consider different values of polygenicity (M; the number of

causal SNPs) and degrees of pleiotropy (9, the probability that a

causal SNP is pleiotropic). Let G be the additive genetic covariance

matrix (diagonal entries are the SNP heritabilities h2
i for each

trait i). Then the genetic correlation of traits i; j is rg;ij ¼ gij=ffiffiffiffiffiffiffiffiffi
giigjj

p ¼ gij=
ffiffiffiffiffiffiffiffiffiffi
h2
i h

2
j

q
: Under our simulation model, we assume that

if a SNP is pleiotropic, then b � MVNð0; G� =MnÞ, where g�ii ¼
gii$ð1 � ð1 � 9Þ =dÞ=9 ; g� isj ¼ gisj=9: If a SNP is non-pleiotropic

and is causal for trait j, then bj � Nð0;h2
j =MnÞ; where h2

j :¼ gjj,

and b�j ¼ 0:We assume that if a SNP is non-pleiotropic, it is causal

for a particular trait j with uniform probability 1=d. Under this

model, we can see that averaging over pleiotropic and non-pleio-

tropic loci, we recover the overall genetic covariance G:

s2
bj
¼ð1� 9Þ

.
d$h2

j þ 9$ð1�ð1� 9Þ = dÞ
.
9$h2

j ¼ h2
j ¼ gjj;

(Equation 3)

sbi ;bj ¼0þ 9$1
.
9$gisj ¼ gisj: (Equation 4)

Note that, here, b is standardized by the phenotypic variance but

not the genotypic variance. Thus, we normalize the variance by a

factor of n ¼ 2$E½pq�, assuming some stationary distribution for

the allele frequency p ¼ 1� q. Assuming the neutral stationary

distribution f ðpÞf1=p yields n ¼ 4logNe , where Ne is the diploid

effective population size. This choice of n ensures

E½PM
k¼1

2b2kpkqk� ¼ h2 under the nominal allele frequency spectrum.

The equation holds because we assume independence of effects

and allele frequencies; we also performed simulations where b

and p are allowed to depend strongly on each other due to purify-

ing selection.

Simulation of confounding due to population structure and uncorrec-

ted GWAS stratification

Previous estimates of selection to increase height in Europe have

been biased by a combination of uncorrected stratification and

GWAS and systematic differences in the coalescent rate at SNPs

that depended on their allele frequency difference in 1000 Ge-
The America
nomes (1KG) British (GBR) versus Southern Italy (TSI) popula-

tions.25,26 We developed a simulation model based on empirical

data from the 1KG data in order to assess the robustness of our

method compared to tSDS-based tests for polygenic selection.15

We model uncorrected stratification in summary statistics for a

simulated polygenic trait architecture by drawing random SNP

effects

b � N
�
0;h2

� ðMnÞ $ I�; (Equation 5)

where I is the identity matrix. We assume that the phenotype fol-

lows the form

f¼Xbþ Sþ e; (Equation 6)

where S is some environmentally determined stratified effect expe-

rienced by an individual on the basis of whether they belong to a

subpopulation. If N1; N2 individuals (N1 þN2 ¼ NÞ belong to sub-

populations 1 and 2 (e.g., GBR and TSI), respectively, then

Si ¼ þss=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1=N2

p
if i ¼ 1, Si ¼ � ss =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2=N1

p
if i ¼ 2: (It can

be shown then that phenotypic mean remains 0, and variance

due to stratification is s2s .) Under this form of stratification,

assuming random mating of genotypes, the expected effect esti-

mate is biased:

E
hbb��Xi¼ bþ XuS

.
ð2NpqÞ (Equation 7)

¼ bþ2ss

� ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
f1 �

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
$ ðN �N2 $ p�N1

�
N2 $ f1Þ

�.
ð2NpqÞ

(Equation 8)

¼ bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1=N2

p
ssðf1 � pÞ

.
ðpqÞ; (Equation 9)

where p¼ 1�q¼ ðN1 f1 þN2f2Þ=NÞ is the overall frequency of the

SNP and f1 is the frequency of the SNP in subpopulation 1. The

nominal standard error of bb is the usual seðbbÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
2Npq

p
.

Hence, we can simulate GWAS-estimated SNP effects with un-

corrected stratification by using

b�MVN
�
0;h2

� ðMnÞ $ I� (Equation 10)

bb���b � N
�
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1=N2

p
ssðf1 � pÞ

.
ðpqÞ;s2

e

.
N $ I

�
; (Equation 11)

where Z ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2Npq

p bb and se
2 :¼ 1� h2 � sS

2: Although in this

simple model of GWASs with uncorrected stratification, we as-

sume no LD between causal sites, the bias in the effect estimates

does not depend on LD. We note that this is equivalent to the

model of Bulik-Sullivan et al. (2015a),29 generalized to uneven

sample sizes from subpopulations.

Population genetic model of selection and ascertainment bias via

GWASs

Given b; we simulate selection following the multivariate Lande

approximation (see Model). Because we simulate polygenic archi-

tectures of MR100 assuming no linkage between causal loci, our

assumption of infinitesimal genetic architecture is appropriate.

(We also explore the performance of our model when we allow

LD between causal SNPs; see Figure S4). We then simulate the

trajectory of the allele forward in time by using a normal approx-

imation to the Wright-Fisher model with selection, i.e.,

ptþ1 � Nðpt þsptð1 � pt Þ; pt ð1 � pt Þ =4NeÞ, where s is calculated

with the multivariate Lande approximation. For most of our sim-

ulations, we simulate forward for 50 generations (i.e., we assume
n Journal of Human Genetics 108, 219–239, February 4, 2021 221



selection began 50 generations before the present), unless other-

wise stated. Let p be the present-day allele frequency. We simulate

the ascertainment of this SNP in a GWAS by simulating the SNP Z

scoresZ � MVNð ffiffiffiffiffiffiffiffiffiffiffiffi
2Npq

p
b;EÞ, where Eii ¼ 1;Eisj ¼ re, where re is a

term that allows for cross-trait correlations in environmental

noise. (Note that, here, Z is the usual Z score of bb, not to be

confused with the selection Z score we present earlier.) Unless

stated otherwise, we set N ¼ 105; re ¼ 0:1 in all simulations. We

use a p value threshold of 5310�8 to ascertain a SNP; this must

be surpassed by at least one trait. If a SNP is ascertained, we simu-

late its trajectory backward in time by using the normal approxi-

mation to the neutral Wright-Fisher diffusion conditional on

loss, pt�1 � Nðpt ð1 � 1 =4NeÞ; pt ð1 � ptÞ =4NeÞ. We use the

coalescent simulator mssel to simulate a sample of haplotypes

conditional on this allele frequency trajectory.20 We use n ¼ 400

haplotypes and m ¼ r ¼ 10�8/bp/gen and simulate regions of

1 Mbp, centered on the causal SNP at the position 53 105.

To simulate ascertainment of non-causal SNPs in a GWAS, we

take the trait with the top Z score at the causal SNP and jointly

simulate Z scores for that trait for all linked SNPs within a

200 kbp window centered on the causal SNP and surpassing

an MAF threshold (MAF R 0.01). We ascertain the SNP with

the top Z score (sometimes the causal SNP) and then simulate

the Z scores for all traits, conditioned on the Z score for the

one aforementioned trait. We simulate this way rather than

jointly simulating Z scores for all traits at all SNPs for two rea-

sons: the top SNP will typically have the same top trait associa-

tion as the causal and jointly simulating all trait-by-SNP Z scores

increases computational time by >400 for the parameters we

used.

To further reduce computational burden, we simulated libraries

of 103M causal loci and resampled sets of M loci without replace-

ment (some proportion of which meet the ascertainment criteria)

in order to model sampling variation in the test statistics.

Inference of local genealogies

Given a set of simulated haplotypes, we use the software package

Relate19 to infer local genealogies along the sequence. Using posi-

tions of the SNPs ascertained through GWASs, we use the add-on

module SampleBranchLengths to draw m ¼ 5;000 Markov chain

Monte Carlo (MCMC) samples of the branch lengths of the local

tree at the ascertained sites. We then extract coalescence times

from these MCMC samples (thinned down to m ¼ 500 approxi-

mately independent samples) and partition the coalescence times

for each sample tree on the basis of whether they occur between

lineages subtending the derived/ancestral alleles. We note that

Relate, unlike ARGweaver, does not sample over different ARG

or tree topologies and it samples branch lengths for two distinct

local trees independently, conditional on the observed data.

Comparisons to tSDS in simulations

In order to calculate tSDS values for our simulated polygenic traits,

we computed the Gamma shape parameters for a model with con-

stant Ne ¼ 104 by using 250 simulations at a range of DAFs from

1% to 99%, with 2% steps between frequencies, and a sample

size of n ¼ 400 haplotypes. We randomly paired haplotypes in

the sample to form diploid individuals and found singletons

carried by each diploid. We then calculate raw SDS by using the

compute_SDS.R script with our custom Gamma-shapes file. To

calculate SDS, we find the Z score of a SNP’s raw SDS value, where

the mean and standard deviation are estimated from an aggre-

gated set of 29,478 completely unlinked SNPs from our neutral

trait simulations. To calculate tSDS, we calculate the p value of

the Spearman correlation of (signðbbÞ;SDSÞ.
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Results

Simulations

Overview of simulations

We conducted evolutionary simulations of polygenic

adaptation acting on a wide range of multi-trait polygenic

architectures. Our simulated traits are based on SNP herita-

bility and genetic correlation estimates for 23 real human

traits;29,30 unless otherwise stated, we simulate positive se-

lection on/test for selection on a trait modeled after the

heritability of schizophrenia ðh2 ¼ 0:45Þ, and in most of

our pleiotropy analyses, we used parameters based on

schizophrenia and its genetic correlation with three other

traits: bipolar disorder, major depression, and anorexia. In

most of our analysis, we refer to these traits as trait I/II/III/

IV (corresponding to models of schizophrenia/bipolar/

depression/anorexia, respectively). As our method is based

on aggregating population genetic signals of selection with

GWAS summary statistics, we also simulated GWASs in

samples of modern-day individuals (N ¼ 105Þ. Since our

method works by taking the product of likelihoods across

independent sites, we simulate LD pruning in independent

LD blocks, each of 2 Mb in length; LD blocks with a mini-

mumWald test p value of greater than genome-wide signif-

icance are excluded from further analysis. Our simulated

summary statistics incorporate all of the following sources

of bias found in GWASs, unless stated otherwise: random

noise in the effect estimates; Winner’s Curse bias in the

effect estimates (unless stated otherwise, we ascertain

SNPs at genome-wide significance with associations

p < 5310�8 for at least one trait analyzed; we perform

this ascertainment in part to mitigate the relative bias of ef-

fect size estimates due to uncorrected stratification); uncer-

tainty in the location of the causal SNP (we ascertain the

top GWAS hit throughout the linked region); and environ-

mentally correlated noise across traits (only relevant to

simulations of pleiotropic architectures). Average selection

coefficients, allele frequency changes, and population

phenotype changes are detailed in Table S1. Furthermore,

we also simulate a number of scenarios that violate our

model assumptions to assess our method’s robustness:

these include uncorrected GWAS stratification, purifying/

stabilizing selection, underpowered/uneven GWAS sample

sizes, and allelic heterogeneity (i.e., multiple linked causal

SNPs).

For each causal locus, we simulate haplotype data for a

sample of n ¼ 400 1 Mbp-long chromosomes (mutation

and recombination rates m ¼ r ¼ 10�8 and effective popu-

lation size Ne ¼ 104 unless stated otherwise) on which we

applied Relate, a state-of-the-art method for tree infer-

ence,19 to infer the coalescent tree at SNPs ascertained in

this GWAS. However, we point out that our approach

can be applied to any pre-existing method for esti-

mating/sampling these trees (e.g., ARGweaver18). We

then conduct importance sampling to estimate the likeli-

hood function of the selection gradient—i.e., the effect

of a unit increase in phenotypic values on fitness—for
y 4, 2021
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Figure 1. PALM power, calibration, and robustness to uncorrected stratification and ascertainment
(A) Left: Power/false positive rate (FPR) of PALM and tSDS. Error bars denote 95% Bonferroni-corrected confidence intervals. Right: PALM
selection gradient estimates ðbuÞ. Error bars denote 25th–75th percentiles (thick) and 5th–95th percentiles (thin) of estimates; see Table 1
for more details of bu moments and error. Markers and colors in (A) also apply to (B) and (D).
(B) FPR of PALM and tSDS applied to neutral simulations with uncorrected population stratification, simulated with 1000 Genomes data.
We used baseline values of sS ¼ 0:1; NTSI=NGBR ¼ 1%, M ¼ 103, h2 ¼ 50% by using SNPs ascertained at p < 5310�8. Error bars denote
95% Bonferroni-corrected confidence intervals.
(C) Comparison of PALM with true versus Relate-inferred trees, causal versus GWAS-ascertained tag SNPs, and true marginal SNP effects
(solid) versus GWAS-estimated SNP effects (hatched). Error bars denote 95% Bonferroni-corrected confidence intervals.
(D) Varying polygenicity (M) of the polygenic trait. Error bars denote 95% Bonferroni-corrected confidence intervals. Baseline parame-
ters for all simulations except (C) were our constant-size model with M ¼ 103; with Scz under positive selection and testing Scz for se-
lection. In (A) and (B), we use Relate-inferred trees and estimated SNP effects at the causal SNPs; in (D), we use Relate-inferred trees and
estimated effects at tag SNPs. In all panels, we use a 5% nominal FPR (dashed horizontal line) and simulated 103 replicates. In (D), light/
saturated colors signify neutral/selected simulations.
individual traits (i.e., estimated marginally), as well as sets

of genetically correlated traits (i.e., estimated jointly). Our

method, Polygenic Adaptation Likelihood Method

(PALM), can be used to estimate u for polygenic traits.

Improved power to detect selection and estimates of the selec-

tion gradient

We ran PALM to test for selection on our simulations

of polygenic trait architectures, described above (and

in more detail in Appendix A). We estimate the

selection gradient and standardize this quantity by its

standard error, estimated through block bootstrap, to

conduct a Wald test on whether the selection gradient

is non-zero.

First, we conducted simulations at different values of the

selection gradient, ranging from neutral ðu ¼ 0) to strong

ðu ¼ 0:1, average change of mean phenotype of �2 stan-

dard deviations) and compared the statistical power of

PALM to that of tSDS (Figure 1A). Summaries of SNP selec-

tion coefficients, allele frequency changes, and phenotypic

changes are detailed in Table S1. We simulate 5 Mb haplo-
The America
types for a trait with polygenicity (i.e., number of causal

SNPs) M ¼ 1;000; we sample n ¼ 178 haplotypes for

PALM and n ¼ 6;390 for tSDS, corresponding to the sam-

ple sizes we used in our application to 1000 Genomes

British (GBR) individuals versus the sample used by Field

et al. (2016)15 from the UK10K. Here we ascertain only

causal SNPs, but SNP effects are still estimated through

an association test (unless otherwise stated, all other

simulations incorporate uncertainty in the causal SNP).

Both methods are well calibrated under the null (u ¼ 0,

Figure 1A). But we find that despite having a much smaller

sample size, PALM has substantially improved power to

detect selection at all levels (Figure 1A), especially at

weaker values of the selection gradient, where tSDS has

essentially no power ðu%0:05Þ. PALM is also capable of

estimating the selection gradient (Figure 1A, Table 1).

These estimates are well calibrated, and empirical standard

errors closely match estimated standard errors, except

when the selection gradient is exceptionally strong

ðuR0:1Þ (Table 1).
n Journal of Human Genetics 108, 219–239, February 4, 2021 223



Table 1. Selection gradient estimates and standard errors

u Mean bu SD(bu) MSE(bu) Mean SE(bu)

0 0.0053 0.0226 0.0232 0.0246

0.025 0.0306 0.0225 0.0232 0.0243

0.05 0.0465 0.0243 0.0245 0.0266

0.075 0.0931 0.0211 0.0278 0.023

0.1 0.1223 0.0236 0.0325 0.0255

Summary statistics for the accuracy and calibration of estimates also used in Figure 1 (see caption for simulation details). Mean SE is the mean nominal standard
error. Simulations are the same as used in Figure 1A. SD, standard deviation; MSE, mean squared error.
We also examined the calibration and power of the mar-

ginal test in simulations of a polygenic trait with varying

polygenicity (Figure 1D). Across a wide range of polygenic-

ities, PALM is well powered to detect selection (>90% for

100%M%1;000) and the false positive rate (FPR) was

well calibrated in all circumstances (Figure 1D). Although

PALM had slightly lower power for extremely polygenic ar-

chitectures (65% 53% for M ¼ 104Þ, we found that when

the causal effect sizes and true genealogies are known,

this power significantly increases (88%52%), suggesting

that ability to detect selection on extremely polygenic

traits is limited by ARG and GWAS effect size estimates.

In comparisons to tSDS, we found substantially improved

statistical power across this range of polygenicity values

(Figure 1D). We also conducted similar tests for a short

pulse of selection (u ¼ 0:05 for 35 generations, or �1,000

years assuming 29 years/generation) under a model of

British demography;19 we found that overall power was

comparable to that of constant population size simulations

with u ¼ 0:025, consistent with previous work showing

that the product of selection strength and time span

largely determines statistical power (Figure S2). Lastly, we

conducted a test for a 50-generation-long pulse of selection

starting 250 generations before the present (�7.3 kya,

assuming 29 years/generation), which had 23% (53%) po-

wer to detect the pulse, whereas the test was well calibrated

under the null (FPR of 4% 5 1%); this illustrates that our

method is well calibrated and has (although attenuated)

power to detect selection on more ancient timescales.

However, we caution that certain model violations, such

as changes in environment, LD and marginal effect sizes,

and unmodeled population structure, may potentially

cause biases.

Robustness to uncorrected GWAS stratification

We compared the power curve to the FPR of both methods

under a model of uncorrected GWAS stratification

(Figure 1B). We simulated polygenic trait architectures

and GWASs such that estimated SNP effects (bb) were

both systematically biased and correlated with differences

in the coalescence rate, stratified by DAF (e.g., SDS), match-

ing the findings of Berg et al. (2019)25 and Sohail et al.

(2019)26 that allele frequency differentiation between

British (GBR) and Toscani in Italia (TSI) individuals was

positively correlated with both bb and SDS (Figure S1).
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To model this scenario, we ascertained a set of 40,320

SNPs with MAF > 0.5% in the UK Biobank (UKBB) and

SDS calculated by Field et al. (2016) using the UK10K

cohort.15 We then sampled coalescence times at these

SNPs in 1KG Phase 3 GBR individuals by using Relate.

For each SNP, we simulated GWAS summary statistics by

assuming that the GWAS cohort is comprised of some ra-

tio,NTSI=NGBR; of TSI to GBR individuals, where population

identity determines an individual’s stratified effect. This in-

duces a correlation between SNP effects and the difference

in allele frequency between TSI and GBR. Baseline param-

eter values were sS ¼ 0:1; NTSI=NGBR ¼ 1%, M ¼ 1;000,

and p ¼ 5310�8:We varied the strength of the stratified ef-

fect (sS, in phenotypic standard deviations) and found that

both methods are well calibrated when sS is sufficiently

small, but as sS grows past 0.1, the FPR of tSDS was inflated

over 100% more than that of PALM (Figure 1B).

We stress that this disparity is most likely not caused by

higher sensitivity of tSDS, as we simulated polygenic adap-

tation under similar parameters and found PALM was bet-

ter powered to detect selection, with up to 83 improve-

ment in power for smaller values of the selection

gradient (Figure 1A). We also found that for highly poly-

genic traits (e.g., M ¼ 23103Þ, the tSDS test is overconfi-

dent (>10% at 5% nominal), while PALM remains well

calibrated (Figure 1B). We observe the same pattern as we

increase the size of the cohort subgroup receiving the strat-

ified effect (NTSI=NGBR); at NTSI=NGBR ¼ 2:5%; the tSDS test

is overconfident (>10% at 5% nominal), while PALM re-

mains well calibrated (Figure 1B).

Lastly, we tested the sensitivity of these methods to the

stringency of the p value threshold used and found that

the tSDS test was increasingly overconfident as the

threshold was relaxed, whereas PALM was well calibrated

regardless of p value threshold (Figure 1B). These results

suggest that PALM is more robust to uncorrected stratifica-

tion than the tSDS test and obtains superior statistical po-

wer even at lower sample sizes. However, we emphasize

that PALM, like any other available test, is not fully robust

to the effects of uncontrolled population stratification. Suf-

ficiently strong uncorrected population stratification can

lead to false inferences of polygenic selection when there

is none. These results further demonstrate that cryptic

population structure (e.g., systematic differences in the
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allele frequency spectrum between TSI and GBR) in the

absence of a stratification effect (i.e., sS ¼ 0) does not incur

a bias in PALM’s test for selection.

We note, however, that this experiment does not

exhaust the possible scenarios of uncorrected stratification

that might bias a test for polygenic adaptation. For

example, it may be that more recently formed population

structure is harder to correct with standard tools; this

might correspond to population structure within popula-

tions (e.g., within GBR), represented by higher-order prin-

cipal components of Europeans in 1000 Genomes.

Robustness to ascertainment bias and uncertainty in GWAS

estimates

Next, we considered the effects of different levels of un-

certainty and ascertainment on the performance of

PALM (Figure 1C). We considered the effects of condi-

tioning on the true local tree versus with Relate-inferred

trees combined with importance sampling, conditioning

on the true marginal SNP effect versus estimating this ef-

fect with noise in a GWAS, and conditioning on the

causal SNP versus taking the top tag SNP in a local

GWAS on linked SNPs. PALM was well calibrated with

both true trees and importance sampling, with highest

statistical power (100%) with true trees and a slight

drop in power under importance sampling (90%–92%)

(Figure 1C). Our test was well calibrated despite bias

(from winner’s curse) and noise in the estimated SNP ef-

fects, with no discernible difference from using the true

SNP effects (Figure 1C); however, for smaller sample sizes

(N < < 105Þ this may not be the case. Lastly, using the

causal SNPs versus GWAS-ascertained tag SNPs did not

diminish test power, and FPR remained well calibrated

(Figure 1C). We also explored the effects of GWAS sample

size, which will affect the ascertainment process and,

hence, the degree of bias and uncertainty in ascertained

SNP effect estimates (Table S2). We considered two

different GWAS sizes: N ¼ 104 and 105. We found that

under lower sample size, the test was slightly inflated

(e.g., empirical FPR of 3.1% [51.4%] and 7.0%

[51.6%] at N ¼ 105 and 104 for trait II, respectively

(brackets denote 95% CIs; Table S2). In terms of power,

the test is still well powered at lower sample sizes, but

there is a noticeable drop (94.1% [51.4%] and 69.0%

[53.0%] at N ¼ 105 and 104, respectively; Table S2).

Robustness to model violations

We also conducted simulations of polygenic trait architec-

tures under purifying selection based on the model pro-

posed by Schoech et al. (2019)7 (Figure S3). Under such a

scenario, an inverse relationship between effect size

magnitude and DAF is expected, in contrast to our baseline

simulation model in which effect size is independent of

frequency prior to the onset of selection. We found that

across a range of polygenicities ðM ¼ 33103;104;33104 Þ
and selection strengths (2Ns

� ¼ 3; 10; 30, where s
�
denotes

mean selection coefficient of causal SNPs), PALM is not

confounded by purifying selection and is well calibrated

to a nominal FPR of 5% (Figure S3); in fact, under very
The America
strong selection and/or low polygenicities, PALM is slightly

conservative (Figure S3).

As our model and baseline simulations assume a single

causal SNP per linked locus, we conducted simulations of

allelic heterogeneity (Figure S4) by using forward simula-

tions in SLiM.31 We simulated a trait architecture with

h2 ¼ 50% and a mutational target of 10031 Mbp linked

loci, considering two cases: (1) 5% of incoming mutations

are causal and (2) 50% of incoming mutations are causal.

In each of these scenarios, we conducted simulations

with neutral evolution and adaptation. We found that in

each case, the test is well calibrated under the null and

well powered to detect selection (Figure S4).

We also explored the time specificity of PALM’s test for

selection. Testing under a nominal model of selection in

the last 50 generations, we consider the rate at which

PALM’s estimate of selection timing can be biased by older

selection (Figure S5). We found that as selection recedes

into the past, the FPR decays toward the nominal rate,

with limited confounding when the pulse of selection

occurred 200–250 generations ago. Although we did not

directly test the ability for PALM to detect more ancient se-

lection under the correct nominal model (i.e., assuming

ancient selection), one can interpret the FPR in Figure S5

as a lower bound on the power.

Lastly, we tested the robustness of PALM under muta-

tional biases (Figure S15). We used a model where, with

probability 0%b%1, the sign of the effect of the derived

allele is set to þ1. (In other words, b ¼ 1 creates 100%

mutational bias for trait-increasing alleles, whereas b ¼ 0

returns the original model.) We simulate no selection in

this scenario. We find that for moderate values of b, the

test is well calibrated; however, substantial mutational

bias can bias the test (Figure S15).

We summarize all of these various robustness measure-

ments and previous tests (e.g., stratification) of PALM in

Table 2.

Pleiotropy can cause bias in tests for polygenic adaptation

Traitswithnofitness effect canundergo correlated response

due to direct selection on pleiotropically related traits.

Without accounting for pleiotropy, standard tests for poly-

genic adaptation cannot be interpreted as statements

regarding direct selection. To illustrate how pleiotropy can

affect tests for polygenic adaptation, we simulated pleio-

tropic trait architectures for 23 traits based on estimates of

SNP heritability and genetic correlation for real human

traits.30 This builds largely off our aforementioned simula-

tion approach, with the introduction of a parameter 9, the

degree of pleiotropy, i.e., the probability that a causal SNP

is pleiotropic. As a brief illustration of how pleiotropy

causes bias in polygenic selection estimates, we used our

pleiotropic traits simulations to estimate maximum likeli-

hood selection coefficients for SNPs ascertained for associa-

tions to two genetically correlated traits, trait I and II,

modeled after schizophrenia and bipolar disorder

ðrg z80%; Figure S6).We simulate a pulse of selection to in-

crease trait I (u ¼ 0:05; approximately þ1 standard
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Table 2. Summary of PALM/J-PALM robustness tests

Scenario Well calibrated?

Uncorrected stratification �

Uncertainty in causal SNPs U

Uncertainty in marginal effect sizes U

Uncertainty in genealogies U

Low GWAS sample size U

Polygenicity U

Allelic heterogeneity U

Purifying/stabilizing selection U

Non-equilibrium demography U

Mutational bias �

Time specificity �

Environmental covariance U

Varying pleiotropy U

Here, we summarize robustness to various scenarios and model violations
based on our tests of empirical versus nominal false positive rates. Check marks
(U) signify uniform/overwhelming robustness; tildes (�) signify robustness un-
der moderate conditions.
deviation change in population mean over 50 generations,

Table S1); trait 2 has no causal effect on fitness. We esti-

mated selection coefficients by taking the maximum likeli-

hood estimate of s for each SNP independently, where the

likelihood is estimated with our importance sampling

approach. Here, we show results for polygenicity M ¼
1;000 and degree of pleiotropy 9 ¼ 60% (Figure S6).

Under the Lande approximation szbuu, we expect a

non-constant linear relationship between bb and bs for traits
under selection. But as a result of the strong correlation be-

tween these two traits, it is difficult to disentangle which of

the traits has a causal effect on fitness (Figure S6A). We per-

formed an ad hoc test for a systematic relationship be-

tween bb and bs (Spearman test) to detect polygenic adapta-

tion; while this test is well powered to detect selection on

trait I, it is prone to spurious hits for selection on trait II,

which has no effect on fitness (Figure S6B). Thus, marginal

tests for selection on traits can be significantly biased

because of pleiotropy (in this case, genetic correlation).

Joint test for polygenic adaptation controls for pleiotropy

We also introduce a variant on our method, J-PALM, which

is designed to disentangle correlated traits under selection

and control for confounding due to pleiotropy. Briefly, J-

PALM uses the same likelihood approach as PALM, but

we jointly infer the selection gradient u on a set of d traits

jointly, rather than inferring the selection gradient on a

single trait marginally (see Model and Appendix A for de-

tails). Under the joint model, the likelihood is still a func-

tion of the selection coefficient of each SNP, but we allow

that these selection coefficients depend on the fitness ef-

fects of d traits jointly (see Model and Equation 2).
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We applied both our marginal test, PALM, and our joint

test, J-PALM, to our cluster of four simulated traits, traits I–

IV, modeled after SNP heritabilities and genetic correla-

tions for four psychiatric traits: schizophrenia, bipolar dis-

order, major depression, and anorexia (Figure 2A). All traits

have significantly positive genetic correlation to one

another; here, we highlight their genetic correlations to

the selected trait, trait I (Figure 2A; genetic correlations

and SNP heritabilities directly from Bulik-Sullivan et al.

[2015a]29 and Bulik-Sullivan et al. [2015b]30). We assume

a pulse of recent selection for increased trait I prevalence,

with all other traits selectively neutral. We tested traits

marginally and jointly (i.e., all four simultaneously) for se-

lection (Figures 2B and 2C). We found that marginal esti-

mates are biased and cause inflation of the FPR when

testing for selection (Figures 2B and 2C). This bias largely

follows the genetic correlation of the estimand trait to

the selected trait (Figures 2A and 2B). Here, we show results

for polygenicity M ¼ 1; 000 and degree of pleiotropy

9 ¼ 100% (Figure 2), but the results are similar for differing

degrees of pleiotropy (holding rg constant), such as

9 ¼ 60% (Figure S7). This highlights that genetic correla-

tion, regardless of the degree of pleiotropy, is the main

cause of bias in marginal estimates of the selection

gradient.

Furthermore, our results show that if any trait in a genet-

ically correlated cluster is under selection, marginal esti-

mates of the selection gradient for the other traits is typi-

cally highly inflated. For example, a genetic correlation

as low as rg ¼ 19% is sufficient to inflate the FPR for a

neutral trait by nearly 150% (Figures 2A and 2C). Most

traits studied in GWASs have large genetic correlations;

Watanabe et al. (2019) found an average
��rg �� ¼ 16% across

155,403 human trait pairs, with 15.5% of trait pairs signif-

icant (average
��rg �� ¼ 38%).32 The extent of strong genetic

correlation suggests that if any single heritable trait has

evolved under selection, it is likely to cause substantial rip-

ple effects in terms of bias of selection estimates on other

heritable traits. By contrast, estimates of selection obtained

via our joint test fully correct for these biases if the relevant

selected trait is included in the analysis (Figures 2B and

2C). We applied the joint test to the same set of simula-

tions and found it can reliably detect and attribute selec-

tion to trait I (Figures 2B and 2C). The joint test preserved

�80% power even with the leading genetic correlate’s, trait

II, having rg ¼ 79:4% to Trait I and produces well-cali-

brated FPR regardless of rg (Figure 2C).

We explored performance of J-PALM under a wide array

of simulation scenarios of different polygenic architectures

and types of selection (Figure 5), varying the degree of plei-

otropy 9 (Figure 3A), rg to the selected trait (Figure 3B), pol-

ygenicity M (Figure 3C), and antagonistic selection

(Figure 3D). Baseline values of parameters used were posi-

tive selection on trait I with other traits neutral, jointly

testing trait I and trait III (rg ¼ 51%, 9 ¼ 60%, and M ¼
1,000). All of our pleiotropic simulations include an envi-

ronmental noise correlation across traits of re ¼
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A B C Figure 2. Joint testing for polygenic
adaptation controls for pleiotropy
(A) We simulated a cluster of four traits (I–
IV) modeled after real human heritability
and genetic correlation estimates for
schizophrenia (I), bipolar disorder (II), ma-
jor depression (III), and anorexia (IV), with
selection to increase trait I in the last 50
generations.
(B and C) We ran marginal and joint
tests for selection on these four traits.
While marginal selection tests were well
powered, they were strongly biased by
even fairly low genetic correlations. Con-
ducting a joint test fully controls for
genetic correlations while retaining high

power to detect and isolate selection on trait I. Simulations (1,000 replicates) were done under our constant effective population size
model with 9 ¼ 60%; M ¼ 1;000; with trait I under positive selection.
10%: Across this range of pleiotropic and polygenic archi-

tectures, we established that the joint test is well calibrated

when no traits are under selection (Figure S8). Across

different degrees of pleiotropy ð40%%9%100%Þ, we

found J-PALM was well calibrated and had good power to

detect and attribute selection to trait I (Figure 3A).

Across a range of levels of polygenicity (100

%M%10;000Þ, PALM was well calibrated and had good

power to detect and attribute selection to trait I (>75%

for M %3; 000), although the power is somewhat attenu-

ated for extremely polygenic architectures (�40% for M ¼
10;000Þ (Figure 3B). This pattern is also found in the mar-

ginal tests on the same data, and there is only a modest

reduction in power when switching to the joint test (Fig-

ures 1C and 3B). We note that the reduction in power is

sensitive to the strength of genetic correlation; the joint

test of trait I versus trait II (rg ¼ 79%Þ had greater reduction

in power from the marginal test than that of trait I versus

trait III (Figures 1C, 3B, 3C, and S9). Our method fully cor-

rects the biases suffered by marginal tests for polygenic

adaptation while retaining good power to detect adapta-

tion even when genetic correlation is strong.

We also examined what happened when selection acted

ondifferent traits in the cluster, jointly testing each selected

trait with trait II (Figure 3C). The test iswell calibrated for all

traits, buthas less power to attribute selection to traitswith a

high genetic correlation to trait II (e.g., trait I, h2 ¼ 45%;

rg ¼ 79%) or low heritability (e.g., trait III, h2 ¼ 17%;

rg ¼ 48%) (Figures 1E and 3C). By contrast, traits with

high heritability and/or low genetic correlation to trait II

(e.g., trait IV, h2 ¼ 49%; rg ¼ 11%) have little loss in power

in the joint test (Figures 1E and 3C).We summarize the cali-

brationof J-PALMunder thesevarious conditions inTable 2.

Detecting antagonistic selection

We also considered the possibility of antagonistic selection

(i.e., selection to both increase trait I and decrease trait II,

Figure 3D). We hypothesized that marginal tests would

be underpowered to detect this mode of selection acting

on traits with strong genetic correlation and that joint

testing might uncover this signal. Indeed, power to detect

selection in this regime is quite low with marginal testing,
The America
with 3%–13% power at a 5% threshold (Figure 3D). How-

ever, the joint testing boosts power significantly, with

40%–51% power at a 5% threshold (Figure 3D). We also

tested the opposite scenario, where trait I and trait II are

both under positive (complementary) selection; we found

the joint test is well powered to detect that multiple genet-

ically correlated traits are under selection (Figure S10).

Thus, J-PALMprovides several gains in power over themar-

ginal test, such as uncovering antagonistic selection that is

‘‘cancelled out’’ by genetic correlation or confirmingmulti-

ple traits are under selection.

Interpretation and limitations of the joint test

We also considered how our joint test performs when the

causal trait (i.e., a trait with a causal effect on fitness) is

excluded from the model. We conducted pairwise joint

tests on each pair of traits I–IV in simulations with trait I

under selection and all other traits neutral (Figure 3E).

Rows correspond to the trait for which the selection test

is performed (the focal trait), and columns correspond to

the other trait included in the joint model (the conditional

trait). We also considered other scenarios, such as all traits

neutral, complementary selection, and antagonistic selec-

tion (Figure S11).

As we demonstrated previously, when the causal trait

(trait I) is included, the selection test is well calibrated for

neutral traits (Figure 3E). However, we find that when trait

I is excluded, the selection test has high positive rates for

traits that have no causal fitness effect but are strongly

genetically correlated with the causal trait (e.g., trait II).

In general, our results demonstrate that selection tends

to be attributed to the trait with the strongest genetic cor-

relation to the causal trait (e.g., trait II); other traits with ge-

netic correlation to the causal trait (e.g., trait III) have some

minor inflation of the positive rate, but selection is pre-

dominantly attributed to the closest proxy for the causal

trait. These results highlight an important limitation of

our model: namely, the selection gradient estimates are

not to be interpreted as causal fitness effects. As our simu-

lated results show, this proposition is generally false when

a trait with causal fitness effect and nonzero genetic corre-

lation is excluded.
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Figure 3. Simulations of joint testing power and calibration
(A–F) Differing the degree of pleiotropy 9 (A), the trait truly under selection (B), the polygenicityM of the traits (C), antagonistic selection
on two traits with positive genetic correlation (D), pairwise tests for selection (trait I under selection) (E), and pairwise tests for correlated
response (trait I under selection) (F). In (A)–(D), red/pink/blue bars indicate estimates of selection for traits under positive selection/
neutrality/negative selection. In (E) and (F), heatmap is colored by positive rate (also text in boxes; standard errors in parentheses).

(legend continued on next page)
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Interpretation and limitations due to GxE

We alsomodeled gene-by-environment (GxE) interactions.

We considered the worst-case GxE scenario in which it is

statistically impossible to distinguish GxE from direct ge-

netic effects (Figure 4). Such is the case when, e.g., a study

is conducted in a completely homogeneous environment

in which the environment causes a trait to become herita-

ble. For example, suppose a study is conducted on Planet A,

where a social policy dictates that admission to college is

contingent on one’s skin color (e.g., 80% heritable)

exceeding a threshold. In the absence of the policy, the

heritability of ‘‘years of education’’ (EduYears) might be

0%; however, the environment incurs heritability >>

0%, and in a strict (although not biological) sense, skin co-

lor is causal for EduYears on Planet A. Furthermore, unless

the study is heterogeneous with respect to the relevant

environment (e.g., extending to some Planet B without

such a policy), it is intractable to correctly attribute to

GxE the heritability of EduYears (and its genetic correlation

to skin color).

We note that such ‘‘intractable’’ GxE reduces to the main

simulation model we have used, since direct effects on one

trait (e.g., trait I) are consistently translated into effects on

another trait (e.g., trait II) via a homogeneous environ-

mental condition. Following our previous simulations,

we find that under neutrality, such intractable GxE does

not incur an excess of false positives on the marginal test

(Figure 1A). Supposing direct selection on trait I (on which

the environment acts on to incur heritability of/genetic

correlation with trait II), the marginal test will ascribe se-

lection to trait II (Figure 2B); however, provided the traits

are genetically non-collinear (e.g., rg%80%), then the joint

test will correctly ascribe direct selection to trait I in a joint

test where this trait is included (Figure 3E). In the case that

selection is acting directly on trait II (which is only herita-

ble via GxE), the model will detect selection on this trait in

both marginal and joint tests; thus, we encourage caution

in interpreting estimates of the selection gradient, as it is

not capable of distinguishing selection induced by GxE

versus selection on a non-environmentally contingent

trait.

Testing for correlated response

Our method can also test for correlated response to

selection, i.e., whether a trait has evolved (at least in

part) as a result of selection on some other genetically

correlated trait. We introduce the notion of an ‘‘effective

selection gradient’’ ðutrait;modelÞ, which measures attribut-

able amounts of selection to each trait included in amodel.

Consider two traits, A and B. Suppose trait A is under selec-

tion and trait B is neutral. If rg ¼ 0, the effective selection

gradient of B is 0, regardless of selection on trait A or

whether we include trait A in the model, because no selec-
Dashed horizontal lines indicate 5% nominal significance level, and b
Baseline parameters for all simulations (1,000 replicates under each s
with trait I under positive selection. In (A) and (B) and (D), joint tests
Diagonal elements correspond to marginal test for selection.
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tion on A is attributable to B. Hence, uB;marginal ¼ uB;joint .

By contrast, if
��rg �� > 0, marginally trait B has a nonzero

effective selection gradient; however, in a joint model

with trait I, the effective selection gradient of trait II is 0,

since all direct selection can be attributed to trait I. Hence,

because of correlated response, there is a difference in

the effective selection gradient in the two models:

uB;marginal s uB;joint . However, the converse is not true for

trait I; bothmarginally and jointly with trait II, all selection

can be attributed to trait I, and so uA;marginal s uA;joint . We

developed a test statistic R (see Equation A10 in Appendix

A) that tests for correlated response under the null hypoth-

esis H0 : uj;marginal ¼ uj;joint , i.e., that the marginal and joint

effective selection gradients are equal.

We conducted tests of correlated response on each pair of

traits I–V (we introduce trait V, which has rg ¼ 0% to trait I)

(Figure 3F).We found that the test for correlated response of

trait I is null, concordant with all other traits in the simula-

tion’s being neutral (Figure 3F). We also saw that for trait V,

which has no genetic correlation to the directly selected

trait, the test is null, concordant with the necessity of ge-

netic correlation to drive correlated response (Figure 3F).

We saw that tests for correlated response generally grew in

their power as rg to trait I increased. However, power is

slightly lower for rg ¼ 80% than rg ¼ 50% (i.e., testing trait

II versus trait III for correlated response to trait I) (Figure 3F).

This may indicate that for strongly genetically correlated

traits, it is often ambiguous which one of the traits is

evolving in correlated response. The test is also well cali-

brated under neutral simulations (Figure S12A) and well

powered to detect more complex forms of correlated

response, such as antagonistic and complementary selec-

tion (Figures S12B and S12C). We also explored the perfor-

mance of the correlated response test, along with the joint

test for selection, in a K-way model with traits I–IV tested

jointly (Figure S13). Our results indicate that our test statis-

tic R can be used to detect whether a trait has been under

correlated response; however, it is incorrect to make

strongly causal interpretations of the test (e.g., ‘‘trait III is

under correlated response to trait II’’).

Effect of small or uneven GWAS sample size

We tested the effect of GWAS sample size on the joint test,

considering not only lower sample size but also uneven

sample sizes (Table S2). Similar to the effect of lower sample

size on the marginal test, we found that lower sample size

for both traits reduced power and slightly inflated the FPR;

e.g., testing for selection jointly on trait I versus trait II

(simulating selection to increase trait I), we found that at

N ¼ 104 for trait I and trait II, the FPR for trait II reached

8.0% (51.8%) (Table S2). However, this was not always

the case; e.g., for NI ¼ 105; NII ¼ 104, the FPR for trait II

was calibrated properly (4.6% 5 1.4%) (Table S2).
lack lines indicate 95% Bonferroni-corrected confidence intervals.
cenario) were our constant-size model with 9 ¼ 60%; M ¼ 1;000;
are performed on trait I/trait III and trait I/trait II, respectively. (E)
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Figure 4. Schematic of ‘‘intractable’’
GxE and induced heritability/genetic
correlation
Consider Planet A in which there is a ho-
mogeneous environment where a policy
states that only the fairest (i.e., lightest-
skinned) teenagers are admitted to college.
If skin color is heritable, then so will be
years of education (EduYears) (with some
minor attenuation due to truncation with
respect to skin color). Likewise, since ge-
netic variants that modulate skin color
will also modulate the likelihood of being
admitted to college, there will be a genetic
correlation between the two traits. How-
ever, on Planet B, such a policy might not
exist, and accordingly, the heritability of
EduYears will be attenuated (as well as its
genetic correlation with skin color, which
will go to 0%). Unless a study extends
into Planet B, GxE effects are indistinguish-
able from genetic effects.
Power to assign selection to the causal trait was reduced

when that trait’s GWAS was underpowered; e.g., 51.6%

(51.6%) to 45.7% (51.6%) when NIwas dropped from

105 to 104ðNII ¼ 105Þ (Table S2). Interestingly, we found

an even bigger drop in power associated with reduced sam-

ple size for the correlated trait (trait II); when NIIwas

reduced from 105 to 104ðNI ¼ 104Þ, power to detect selec-

tion on trait I dropped from 45.7% (51.6%) to 27.7%

(51.4%) (Table S2). These results indicate that as long as

sample size is reasonably large, estimates are well cali-

brated; furthermore, by increasing sample size of GWASs

for one trait, the joint test is able to leverage that toward

improving power to detect selection on other traits that

have overlapping genetic architecture.

Empirical analysis of trait evolution in British ancestry

Data analysis and quality control

We analyzed 56 GWASs of metabolic, anthropometric, life

history, behavioral, and pigmentation- and immune

response-related traits inhumans (54 from theUKBB; see Ta-

ble S3 for details) for signs of polygenic adaptation.We used

GWAS summary statistics that were nominally corrected for

population structure via either a linear mixed model

(LMM)33 or fixed principal components (PCs, K ¼ 20

PCs)34 and, in some cases, a family history-based approach

(LTFH)35 to boost power for under-powered UKBB traits,

such as type 2 diabetes (Table S3). Formost traits,we avoided
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using meta-analyses and used sum-

mary statistics from the UKBB,34–36

with the exception of schizophrenia

and autism spectrum disorder, since

these traits are underpowered in the

UKBB (note: neither of the latter two

traits showed any significant signals of

selection or correlated response in our

analyses). When available, we chose
to use LMM-based summary statistics over those from fixed

PCs in order to redress possible environmental effects on

stratification on minor PCs, which are not corrected for by

the latter approach. See Table S3 for full information on

GWAS summary statistic sources/methods for each trait we

analyzed. All traits used had at least 25 genome-wide signif-

icant (GWS) loci ðp < 5310�8) in independentLDblocks.36

For all of our empirical analyses, we used coalescent trees

sampled via Relate for a sample of British ancestry (GBR,

n¼ 89Þ from the 1000 Genomes Project, assuming pre-es-

tablished estimates of GBR demographic history.19,37 We

specifically tested for selection in the last 2,000 years (i.e.,

68.95 generations, assuming a generation time of 29 years).

The selection gradient ðuÞ was estimated with maximum

likelihood, with standard errors estimated by block boot-

strapping. We first tested traits marginally for polygenic

adaptation (Figure 5). We include SNPs by pruning for LD

via independent LD blocks, choosing the SNP with the

lowest p value in each independent block and excluding

blocks that do not have a SNP exceeding this threshold.36

Additionally, as a precaution, we analyzed all 56 GWASs

for residual stratification (Figure S14A, cf. Sohail et al.

(2019),26 Figure 2A), finding no significant residual stratifi-

cation on PCs 1–20 (p > 0.005 for all tests). Furthermore,

for comparison, we tested PC-wise stratification in our sim-

ulations of uncorrected stratification (Figures S14B and

S14C, cf. Figure 1B). We found that many of our simulation



Figure 5. Estimates of the selection gradient on 56 human traits
The selection gradient ðbuÞ was estimated using 1000 Genomes Great British (GBR) individuals and summary statistics from various
GWASs (see Table S4 for full results), with standard errors ( bseu) estimated via block bootstrap (Z ¼ bu= bseu). Starred traits indicate signif-
icance at FDR ¼ 0.05.
conditions exhibited significant stratification along PCs 1–

20; nonetheless, our method was robust to levels of uncor-

rected stratification in the simulated data, which greatly

exceed anything observed in the empirical GWAS (e.g.,

sS%0:1; Figures 1B and S14B). Thus, we ruled out residual

stratification alongmajor PCs as a reasonable source of bias

in our results.

Marginal tests for selection

We report our estimates of the selection gradient

(Figure 5) normalized by their standard errors, highlighting

significant traits (FDR ¼ 0.05) and other traits of interest,

with results also presented in Table S4. In the marginal tests

with PALM, we found strong signals of selection acting to

decrease pigmentation (Figure 5, Table S4). We reported

traits with selection gradient p value exceeding a multiple

testing-corrected threshold (FDR ¼ 0.05, Benjamini-Hoch-

berg). Tanning showed the strongest signal of directional

(in this case, negative) selection among all tested traits

ðu ¼ � 0:357 ½0:046�; p ¼ 5:5310�15; standard errors in

brackets). Sunburn ðu¼ þ0:356 ½0:052�; p¼ 1:1310�11Þ
and hair color ðu ¼ þ0:128½0:027�; p ¼ 2:2310�6) also

showed significant positive selection. Several life history

traits also showed significant selection; e.g., age at first birth

ðu ¼ þ0:0546 ½0:0149�; p ¼ 2:5310�4Þ and EduYears ðu ¼
þ0:389 ½0:0107�; p ¼2:6310�4Þ.Wealso foundsignificant

selection acting on an anthropometric trait, bone mineral

density heel-T Z score (BMD, u ¼ þ0:0728 ½0:0222�; p ¼
1:1310�3) and negative selection acting on glycated hemo-

globin levels (HbA1c,u ¼ �0:0167½0:00518�;p¼1:2310�3)
aswell asneuroticism ðu¼� 0:0706 ½0:0254�; p ¼ 5:5310�3Þ.
Several traits of interest have no or inconclusive

evidence of directional selection. We found no

evidence for any recent directional selection on height
The America
ðu ¼ � 0:00148310�3 ½50:0190�; p ¼ 0:938Þ. We also

find inconclusive evidence for selection on body mass in-

dex (BMI, u ¼ � 0:0585 ½50:0331�; p ¼ 0:077Þ, in

contrast to previous findings that BMI has been under sig-

nificant selection to decrease.16

Joint tests for selection

We analyzed 137 trait pairs (Bonferroni prg
< 0:005 and��rg �� > 0:2)32 by using J-PALM to examine whether mar-

ginal signals of selection were due to a correlated response

to selection on another trait (Table 3, Table S5). To aid

clarity, we introduce the notion of focal versus conditional

traits in a joint test. For example, if we estimate the selec-

tion gradient of trait 1 and trait 2, ðu1;u2Þ, then u1is the es-

timate for trait 1 (the focal trait), jointly tested estimated

with trait 2 (the conditional trait); similarly u2is the esti-

mate for trait 2 (the focal trait), jointly tested estimated

with trait 1 (the conditional trait). We establish signifi-

cance of correlated response by using a Wald test on the

statistic R, the difference in the joint and marginal selec-

tion estimates for a focal trait, where the joint analysis is

performed with some other conditional trait (see Testing

for correlated response and Appendix A for more details).

Selected results are presented in Table 3, and results for

the full analysis of all 137 trait pairs are available in Table

S5.

We found several significant signals (FDR ¼ 0.05) of

correlated response (Table 3, full results in Table S5). For

example, although EduYears had strong evidence for selec-

tion in the marginal test ðpmarginal ¼ 2:6310�4), we

found after conditioning on sunburn ability ðrg ¼ 0:24;

p¼ 2:3310�4Þ32 a significant attenuation of this estimate

(pjoint ¼ 0:020, pR ¼ 2:6310�6Þ. These results suggest

that a large part of the signal of selection on EduYears is
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Table 3. Selected trait pairs under correlated response in Great British ancestry

Traits Marginal test Joint test

R pRFocal Conditional Z pZ Z pZ

Hair Tanning 4.74 2.2 3 10�6 1.91 0.056 �3.77 1.7 3 10�4*

EduYears Sunburn 3.65 2.7 3 10�4 2.33 0.020 �4.68 2.9 3 10�6*

Hb1A1c T2D �3.23 1.2 3 10�3 �4.41 1.0 3 10�5* �3.17 1.6 3 10�3*

BP (diastolic) �1.95 0.051 2.36 0.019

T2D Hb1A1c �0.32 0.75 2.75 6.0 3 10�3* 4.34 1.5 3 10�5*

BP (diastolic) 0.28 0.78 2.10 0.036

Selection on the focal trait is estimated jointly with the conditional trait. We report the Z scores under both the marginal and joint tests, as well as the R statistic of
the difference in joint versus marginal selection gradient estimates and their p values. Results for all trait pairs are available in Table S5. T2D, type 2 diabetes;
HbA1c, glycated hemoglobin; BP, blood pressure. Asterisk (*) denotes significance at FDR ¼ 0.05 ðn¼ 23137¼ 274 tests on 137 trait pairs with Bonferroni-sig-
nificant prg

< 0:005=ð56 $55 =2Þ and ��rg > 0:20
��).
most likely due to indirect selection via correlated response

rather than direct selection. However, we stress that these

results do not provide evidence of direct selection on the

conditional trait, here e.g., childhood sunburn occasions

(sunburn) (see e.g., Figure 3E).

We also find significant attenuation of selection signals

for pigmentation traits in our joint analyses (Table 3). In

our joint analysis of hair color and tanning ðrg ¼ � 0:17;

p ¼ 3:6310�3Þ,32 we found that after conditioning on tan-

ning, there is no residual evidence for direct selection on

hair color ðpmarginal ¼ 2:2310�6; pjoint ¼ 0:056;PR ¼
1:7310�4Þ. (The same caveat above regarding the interpre-

tation of correlated response applies here to tanning

ability.)

We identified one case in which the joint analysis un-

covers selection acting on a trait that did not show signif-

icant selection marginally; we found that type 2 diabetes

(T2D), conditioning on HbA1c (rg ¼ 0:69),38 shows signif-

icant selection to increase in prevalenceðpmarginal ¼
0:75; pjoint ¼ 0:0060; pR ¼ 1:5310�5; see Table 3). Esti-

mates of negative selection on HbA1c are also enhanced af-

ter accounting for T2D ðpmarginal ¼ 1:2310�3;Pjoint ¼
1:0310�5; PR ¼ 0:0016; see Table 3). This ‘‘cancelling-

out’’ effect of opposing selection on T2D and HbA1c, two

traits with strong (but not perfect) positive genetic correla-

tion, is the second-strongest signal of correlated response

in our joint analyses. We confirmed that the separability

of these two phenotypes is not due to phenotype mis-spec-

ification; we confirmed T2D status by doctor’s diagnosis

strictly after 30 years of age in order to avoid the possibility

that T1D individuals mistakenly self-report as T2D diag-

nosed.35 The summary statistics also show close replica-

tion of T2D associations in a case-control study, thus

further suggesting T2D is the predominant signal.35

We also illustrate our estimates of selection coefficients

for ascertained T2D/HbA1c SNPs, found independently

of one another, and their fit to our inferredmodel of antag-

onistic selection on T2D/HbA1c (Figure 6A). In general,

T2D-increasing and/or HbA1c-decreasing SNPs are under

positive selection, and vice versa. However, a subset of
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HbA1c-increasing SNPs show extremely strong signs of

positive selection (s > 0:03); these SNPs tend to have

visibly higher positive effects on T2D than other SNPs

with comparable HbA1c effect. In a joint analysis of

HbA1c and diastolic blood pressure (as a proxy for hyper-

tension), our estimate of direct selection on HbA1c was

significantly attenuated at a nominal levelðp ¼ 0:019, Ta-

ble 3), although it did not meet our FDR cutoff. We also

did a joint analysis of T2D and diastolic blood pressure,

finding a significant boost in the estimate of direct selec-

tion on T2D ðp ¼ 0:036, Table 3), although it did not

meet our FDR cutoff.

Lastly, we tested our set of R statistics among the pairs of

genetically correlated traits for enrichment in the tail over

the null (Figure 6B). At the nominal 5% FPR level, we

found significant (2.6-fold) enrichment for correlated

response acting on these traits ðp ¼ 1:5310�7, one-sided

binomial test), suggesting that many additional traits in

this analysis have evolved under indirect selection due to

correlated response.
Discussion

We have presented a method, PALM, for estimating the

directional selection gradient acting on a polygenic trait.

Our method works by estimating likelihood functions for

the selection coefficients of a set of GWAS SNPs and then

aggregating these functions along with GWAS-estimated

SNP effects to find the likelihood of the selection gradient.

Through simulations, we showed that PALM offers

improved power over current methods across a range of se-

lection gradientsðu ¼ 0:025 � 0:10) and polygenicities

ðM ¼ 102 �104Þ and is the first method to our knowledge

that can estimate u from nucleotide data. We showed

that even for these extremely polygenic traits where power

is attenuated, as methods to infer the tree becomemore ac-

curate and scalable, and as GWAS sample sizes increase, so

too will power to detect selection on extreme polygenic

traits. We conducted robustness checks and showed that
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A B Figure 6. Correlated response in real
traits
(A) Expanded view of antagonistic selec-
tion on glycated hemoglobin (HbA1c)
versus type 2 diabetes (T2D). We estimate
individual SNP selection coefficients by
taking the maximum-likelihood estimatebs for each SNP. We plot this value against
the joint SNP effect estimates for HbA1c
and T2D. Colored lines represent isocon-
tours of sðbÞ ¼ bHbA1c buHbA1c þ bT2D buT2D,
the estimate of the Lande transformation
from SNP effects to selection coefficients,
where bu is inferred jointly for the two
traits (Table 3). The purple-green color

gradient illustrates expected selection coefficients under bu (background) versus individual SNP selection coefficient estimates (rings).
Ring diameter is proportional to SNP selection log-likelihood ratio.
(B) Enrichment of correlated response in analysis of genetically correlated traits. Enrichment in the tails of the distribution of our test

statistic for correlated response Rðp ¼ 1:5310�7, binomial test), which had 2.6-fold enrichment at the nominal 5% level. We assessed

n ¼ 23137 ¼ 274 estimates of correlated response on 137 trait pairs with Bonferroni-significant prg
< 0:005=

56

2
and

��rg > 0:20
��. Red

area indicates pointwise 95% CI of the survival curve.
PALM is robust to typical sources of uncertainty and bias in

GWAS summary statistics (e.g., sampling variation, ascer-

tainment bias/Winner’s Curse), allelic heterogeneity, pur-

ifying selection, and underpowered GWASs.

We also introduced a method, J-PALM, to jointly esti-

mate the selection gradient on multiple traits in order to

control for pleiotropy.We showed that, across a wide range

of polygenic architectures ðM ¼ 102 � 104; 9 ¼ 40% �
100%Þ, J-PALM can reliably detect and assign selection to

the causal trait when it is considered in the analysis.

Furthermore, PALM can be used to uncover genetically

correlated traits under antagonistic selection where the

marginal approach (e.g., PALM) is underpowered. We

considered several additional sources of bias unique to

multi-trait analyses (i.e., uneven GWAS sample sizes, corre-

lation in trait environmental noise) and found J-PALM

robust to these as well.

We note several areas in which the study of polygenic

adaptation can be advanced. Our operative model of poly-

genic adaptation is based on the Lande approximation,

which over long time-courses will overestimate the effi-

ciency of adaptation under stabilizing selection with a shift

in the optimum.12,39 A model that incorporates these dy-

namics will potentially be better suited to detecting poly-

genic adaptation over longer time-courses, such as analyses

of ancient DNA samples. Furthermore, under stabilizing se-

lection, more SNP heritability is expected to be sequestered

to low-frequency alleles and so common SNPs are expected

to change less under adaptation than in our simulation

model.5,12

Advances might also be made through more nuanced

models that make fuller use of GWAS summary statistics

and LD among GWAS markers. We showed our threshold-

ing and pruning scheme for selecting sites did not substan-

tially decrease our method’s power. Pre-existing methods

for fine-mapping or ascertaining pleiotropic loci might in-

crease power even further.40 It is also possible that for traits

with extremely high polygenicity and/or low heritability,
The America
it will be necessary to utilize summary statistics that are

sub-significant and account for uncertainty in the location

of the causal site. While in this paper we explored a thresh-

olding and pruning scheme, which previous work and our

own simulations show to be robust for stringent threshold-

ing,24,25 we have not established how results would differ

for an LD clumping approach or how misspecification of

the LD reference panel (versus the GWAS and/or popula-

tion genetic cohort) affects our results.

We showed that PALM is substantially less prone to bias

due to uncorrected GWAS stratification than comparable

methods, such as tSDS. However, we stress that PALM can

nonetheless be biasedunder sufficiently stronguncorrected

stratification. While we illustrated that residual stratifica-

tion along major PCs is not present in any of the empirical

GWASs we analyzed, the extent to which residual stratifica-

tion along less significant axes of variation could cause bias

is yet unclear. Forms of stratification that we did not

explore, such as GxE interactions, may be more difficult

to account for via standard kinship-based approaches; how-

ever, new methods have recently arisen to this particular

end.41 Our simulations based on empirical data suggest

that cryptic population structure (e.g., within white British

ancestry) does not confound PALM unless overlaid with

fairly extreme stratification. Future work should consider

how more pronounced structure or assortative mating dis-

torts the ARG and/or GWAS effect size estimates, which

may have downstream effects on estimates of polygenic

adaptation. We also note that while PALM is robust to mi-

nor levels of mutational bias, the test can be confounded

by more extreme mutational bias, i.e., attributing muta-

tion-driven changes in the trait distribution to adaptation.

Another limitation of our model is the interpretation of

the estimates of the selection gradient and correlated

response. We showed through simulations that when a

genetically correlated trait with causal fitness effect is

excluded from the analysis, estimates of direct selection

have no causal interpretation. To address this, we
n Journal of Human Genetics 108, 219–239, February 4, 2021 233



introduced the notion of an effective selection gradient,

which depends on which traits are modeled together. Esti-

mates of the effective selection gradient allow us to deter-

mine whether a focal trait has evolved under correlated

response another trait; however, this does not have the

causal interpretation that the focal trait is under correla-

tion response to a particular conditional trait. Further-

more, even in a simple model with a single trait considered

and under selection, nonzero selection gradients may

reflect environmental changes rather than a change in

the trait’s fitness optimum.

Applying PALM to study evolution of 56 human traits in

British ancestry, we found eight traits under significant

directional selection, recovering several previously reported

targets, such as pigmentation traits, educational attain-

ment, and glycated hemoglobin (HbA1c), in agreement

with previous findings of selection on these traits in Eu-

rope.15,16,42 We also report several novel targets of direc-

tional selection, such as increased bone mineral density

and decreased neuroticism. Despite historical claims of se-

lection to increase height in Europe,22 we found no evi-

dence for selection to increase height, consistent with

recent analyses that showed that signals of directional selec-

tiononheighthavebeendrastically inflatedbyuncorrected

population structure in GWAS summary statistics.25,26

We applied our joint test J-PALM to study 137 pairs of

genetically correlated traits for signatures of correlated

response. We found a highly significant enrichment of

correlated response acting on these traits. Particularly, we

found significant correlated response acting on pigmenta-

tion and life history traits (hair color, educational attain-

ment). We showed that signal of selection on traits such

as hair color and educational attainment, which have

been widely reported to date,15,16,42,43 is due in significant

part to correlated response to selection on other traits

versus direct selection acting on these traits.

One proposed theory for the diversification and increase

of blonde hair color in Europe is sexual selection.44,45 How-

ever, our results do not support this, as we show that evi-

dence for selection on hair color is attributable mostly to

correlated response, beyond which there is little evidence

for direct selection on this trait. This echoes previous anal-

ysis showing selection at individual hair color loci may be

indirect, via their pleiotropic effects (e.g., blonde hair gene

KITLG responding to selection for tolerance to climate and

UV radiation46), and conflicts with arguments that hair co-

lor has been under direct sexual selection.

Our marginal test for selection detects significant selec-

tion for increased sunburn ability. We caution that ‘‘child-

hood sunburn occasions’’ is a survey question and is most

likely affected by many exogeneous factors beyond skin

pigmentation (e.g., opportunity to visit the beach or use

sunscreen). Furthermore, pigmentation traits are excep-

tionally prone to stratification. While we find no signifi-

cant uncorrected stratification in the empirical GWAS sum-

mary statistics (for pigmentation or any other traits) and

our simulations suggest that population structure (e.g.,
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that between British and Italian individuals in Europe) ab-

sent a stratification effect does not incur a bias in PALM’s

inference of selection, we cannot exclude the possibility

that residual stratification on less significant axes of ge-

netic variation could play some role.

In our marginal test for selection, we detected significant

selection to increase educational attainment, consistent

with some previous work.16 However, in a joint test with

sunburn (i.e., ‘‘childhood sunburn occasions,’’ the number

of times the individualwas sunburnedas a child), strong sig-

nals of selection to increase educational attainment were

significantly obviated.Weconclude that signals of selection

oneducational attainment are driven significantly by corre-

lated response. We propose that GxE interactions may be

driving these signals of correlated response. Lewontin

(1970), responding to Jensen (1968), pointed out that

then-current estimates of intelligence quotient (IQ) herita-

bility were inflated by GxE.47,48 Indeed, in modern-day

GWASs, we see that educational attainment polygenic

scores in the UKBB are only 50% as predictive in adoptees

as in non-adoptees, indicating a significant role of GxE in

the expression of educational attainment, as well as esti-

mates of its heritability and genetic correlations.49 The

role of GxE or indirect genetic effects has been further illus-

trated by the discrepancy of sibling-based versus standard

GWAS estimates of SNP effects on educational attain-

ment.50 Hence, genetic correlation of sunburn and educa-

tional attainment may be overestimated (e.g., brg ¼ 0:24

with UKBB GWAS32). We do not have data to elucidate

the mechanism of this proposed GxE interaction but hy-

pothesize that educational opportunities could be affected

by skin pigmentation via differential opportunities in edu-

cation, such as racial discrimination. Additionally, it is

notable that ‘‘childhood sunburn occasions’’ may not

directly reflect skin color, as itmaybe related toother factors

(e.g., number of visits to the beach), which in turn may be

modulated by similar GxE mechanisms. Even in the

absence of GxE, we stress that our results are not interpret-

able as evidence of direct selection on sunburn ability—

let alone skin pigmentation—following from our simula-

tion study. Also, the inferred correlation between the traits

and/or the signals of selection could be affected by uncor-

rected GWAS stratification.25,26 Lastly, it is worth noting

that heritability and polygenic score-based phenotype

prediction of educational attainment are largely driven by

indirect effects (i.e., genetic nurture),50,51 thus further

complicating any interpretation of how effects on educa-

tion attainment relate to effects on traits such as pigmenta-

tion. In conclusion, we caution that the observed genetic

correlation may not arise from shared direct effects but

rather some combination of GxE and/or indirect effects.

We found one case of significant antagonistic selection:

T2D shows significant selection to increase, but this signal

was initially occluded by the positive genetic correlation of

T2D with negatively selected glycated hemoglobin

(HbA1c). Our joint analysis with J-PALM disentangles

this antagonism between T2D and HbA1c, revealing latent
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adaptation of T2D. T2D is a complex disease with a com-

plex etiology, involving obesity and various metabolic

risk factors. Selection may have favored some of these fac-

tors under previous environmental conditions where both

obesity and diets rich in simple sugars were uncommon

(also known as the thrifty gene hypothesis).52 HbA1c is a

biomarker commonly used to not only diagnose pre-dia-

betes/diabetes but also to monitor chronic hyperglycemia

as a risk factor for vascular damage.53 T2D and HbA1c are

strongly, although imperfectly, genetically correlated

ðrg ¼ 69%Þ. Although this may seem peculiar because

HbA1c is a diagnostic criterion for T2D, we speculate the

distinction between these phenotypes could be driven by

variation in HbA1c above and/or below diagnostic thresh-

olds or variation of other molecular traits (e.g., fasting

glucose) that are also used as diagnostic criteria. HbA1c is

also associated with hypertension and other cardiovascular

disease independently of T2D incidence.38 It is therefore

possible that selection might have favored some of the

traits underlying increased T2D risk but acted against

some of the more specific negative effects of T2D, which

now are measured by HbA1c.38,53,54 These results provide

evidence in support of the thrifty gene hypothesis.54
Appendix A

Importance sampling estimation of the likelihood

function of selection

Our likelihood model builds heavily on our previous work,

which developed importance sampling approaches to esti-

mating the likelihood function of the selection coefficient

acting on a SNP, LSNPðsÞ:1 Here, we briefly explain the

importance sampling method used to estimate LðuÞ, the
likelihood of the multivariate selection gradient:

LðuÞ¼
YM
i¼1

LSNP
i

�
bu
ðiÞu
�
; (Equation A1)

where bðiÞ is the vector of trait effects for SNP i. In the

following, we omit the subscript i for brevity. We can

model the relationship between SNP s and the haplotype

dataD from a window around the SNP via the latent ances-

tral recombination graph (ARG) G;

LSNPðsÞ¼ Ep½PðDjG; sÞ� ¼ Eq

	
PðDjG; sÞ pðGjsÞ

qðGÞ



(Equation A2)

for any appropriate choice of q such that

pðsÞ > 00qðGÞ > 0, which generally will hold in our

case. Thus, we can approximate the SNP likelihood func-

tion as

bLSNPðsÞ : ¼ 1

m

Xm
l¼1

P
�
D
��GðlÞ; s

� p�GðlÞ��s�
qðGðiÞÞ /LSNP

k ðsÞ;

(Equation A3)
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where the convergence is almost surely as m/N. We are

interested in the particular choice of qðGÞ ¼ pðG j D; s ¼
0Þ, the posterior under selective neutrality, because pro-

grams such as ARGweaver2 and Relate3 can be used to

approximately sample the posterior ARG or aspects of it

(e.g., a local tree). We showed previously that the

approximation

cLRSNPðsÞ¼ 1

m

Xm
l¼1

p
�
G

ðlÞ
i

���s�
p
�
G

ðlÞ
i

���s ¼ 0
� (Equation A4)

is a tractable and accurate estimate of the likelihood ratio

of s, where Gi denotes the local tree at SNP i; extracted

from the ARG G: Here, we introduce and use a slightly

different estimator,

cLRSNPðsÞ¼
Pm

l¼1

pðGi
ðlÞjsÞ

pðGi
ðlÞÞPm

l¼1

pðGi
ðlÞjs¼0Þ

pðGi
ðlÞÞ

; (Equation A5)

where pð $Þ is a neutral prior on coalescence trees. While

pð $Þ is calculated via the structured coalescent, with line-

ages subtending the same allele with frequency XðtÞ coa-
lescing at rate lðtÞ ¼ Nð0Þ=½NðtÞXðtÞ�, the prior pð $Þ is

calculated via the unstructured coalescent with rate

lðtÞ ¼ Nð0Þ=NðtÞ. Note that we do not explicitly model

population structure (e.g., gene flow).

We also note that we have made several additional mod-

ifications to the importance sampling approximationof the

likelihood ratio: first, we assume that the allele frequency

trajectory is a deterministic, logistic function of time,

when previously we modeled stochasticity in the allele fre-

quency trajectory (see the next section for more details).

Because we focus on applying our method to detecting

adaptation in the recent past, this approximation is appro-

priate when drift has had little opportunity to distort allele

frequencies.

Second, we make a functional approximation to

logcLRSNPðsÞ. We do a grid search for the optimal value of

s�; and then we fit a quadratic function to points fðs;
log cLRSNPðsÞÞ : js � s�j < dg. Optimizing logcLRðuÞ then be-

comes a simple process of solving a linear system of

equations:

log cLRðuÞ¼X
i

�
ai
�
bu
ðiÞu
�2

þ bi
�
bu
ðiÞu
�
þ ci

�
;

(Equation A6)

where ðai; bi; ciÞ are the fitting coefficients of the quadratic

approximation for SNP i in descending order of degree.

Thus,

bu¼
"
2
X
i

aibðiÞb
u
ðiÞ

#�1 X
i

bibðiÞ

!
: (Equation A7)
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This approximation has two benefits: (1) solving for the

selection gradient estimate is extremely simple and fast

and (2) it makes it feasible to calculate standard errors

with resampling approaches.
Accounting for multiple SNPs in LD

In our analyses we assume independence of local LD blocks

(see e.g., Berisa and Pickrell, 201636). Generally, we choose

to ascertain a single SNP for each LD block and include its

SNP likelihood in the product (Equation A1). However, in

joint analyses, it may be necessary to ascertain multiple

SNPs per LD block, each corresponding to a GWAS hit for

a different trait.

Let BðiÞ denote the set of ascertained SNPs in the same

LD block as i. If only one SNP from each LD block is

included, then BðiÞ ¼ 1for each ascertained SNP i. If

multiple SNPs from the same LD block are included, we ex-

ponentiate each of these SNPs’ likelihoods by a factor 1=

jBij:

LðuÞ¼
YM
i¼1

LSNP
i

�
bu
ðiÞu
� 1
jBij: (Equation A8)

This can be considered a conservative method for

dealing with SNPs in LD. For example, let A be our set of

ascertained SNPs. If two nearby SNPs i1; i2 are in perfect

LD ðr2 ¼ 1Þ, then we expect LSNP
i1

ðsÞ ¼ LSNP
i2

ðsÞ and bði1Þ ¼
bði2Þ. Suppose all other SNPs in A are independent (i.e., as-

certained from distinct LD blocks). Then the exponentia-

tion factor recovers the original likelihood

LðuÞ¼
YM
i¼1

LSNP
i

�
bu
ðiÞu
� 1
jBij

KðuÞ$
Y

i˛S:isi1 ;i2

LSNP
i

�
bu
ðiÞu
�
; (Equation A9)

where KðuÞ ¼ LSNP
i1

ðbuði1ÞuÞ ¼ LSNP
i2

ðbuði2ÞuÞ: In the other

limiting case r2 ¼ 0, this correction factor is conservative,

as it discounts the contribution of i1; i2 to the log likeli-

hood by a factor of 1/2 .
Selection gradient and correlated selection standard

errors

We use a block bootstrap approach to calculating the stan-

dard errors of bu. Specifically, we identify LD blocks and

bootstrap loci ascertained in distinct blocks. Given the

standard errors, we assess significance by using a Wald

test on the Z statistic bu=dseu :
We also compute a statistic we call R to assess whether a

trait j has evolved under correlated response to selection on

some disjoint set of traits T. To do this, we can estimate se-

lection gradients for two sets of traits, T and TWj; and

calculate

R¼uðTWfjgÞ � uðfjgÞ; (Equation A10)
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where uðUÞis the selection gradient of the trait estimated

with respect to a set of traits U, calculate cseR through block

bootstrap, and assess significant via a Wald test on R= cseR .

Coalescent likelihood models: Relate prior

The prior pðTÞ is the standard coalescent with chang-

ing effective population size. First, let U be the vector

of n� 1 coalescent times of T , ordered most to least

recently. Due to exchangeability of lineages, the den-

sity only depends on T via these coalescent times U.

Specifically,

pðTÞ¼
Yn�1

i¼1
pðUi ¼ uijUi�1 ¼ ui�1Þ (Equation A11)

pðUi ¼ uijUi�1 ¼ ui�1Þ¼ n� iþ 1

2
$Nð0Þ



NðuiÞ$

exp

�
�n� iþ 1

2
ðLðuiÞ�Lðui�1ÞÞ

�
(Equation A12)

LðuÞ¼
Zu
0

Nð0Þ
,

NðtÞ$dt: (Equation A13)

We assume thatNðtÞ is piecewise constant and can be ex-

pressed with t ¼ ðt0; t1;.Þ and N ¼ ðN0;N1;.Þ such as

the required models for ARGweaver and Relate; hence,

finding LðuÞ is a simple sum over integrals defined over

constant functions:

Li ¼
XbðuiÞ
k¼1

N0tk

,
Nk þN0

�
ui � tbðuiÞ

�,
NbðuiÞ;

(Equation A14)

where bðuÞ :¼ maxfk˛ð0;1;2.Þ : u > tkg.
Coalescent selection likelihood under deterministic

model

Unlike in our previous work,1 in which we treated the

allele frequency as a latent random variable, here, we use

a deterministic approximation of the allele frequency

trajectory. Under the standard ‘‘hard sweep’’ model,

an appropriate approximation would be Xðt j sÞ ¼
ð1þ ð1� x0Þ=x0$estÞ�1. Technically, if we want to express

the trajectory conditional on the present-day derived allele

frequency (DAF) x0; it would be more appropriate to use a

closer approximation of the backward Wright-Fisher diffu-

sion with selection (see e.g., Zeng et al., 20184). However,

since we are mostly interested in modeling the recent

past for common alleles ascertained in a GWAS (usually

DAF > 1%), this approximation is appropriate, especially

in populations of large recent Ne such as humans, where

drift is negligible on short timescales.

We assume a pulse of selection over some time interval

ða; bÞ, outside of which the allele is effectively neutral

(and, we assume, at constant frequency):
y 4, 2021



Xðt; s; x0Þ¼ x0; t < a (Equation A15)

¼ �1þ ð1� x0Þ
�
x0$e

sðt�aÞ��1
; a%t < b (Equation A16)

¼ �1þ ð1� x0Þ
�
x0$e

sb
��1

; t > b: (Equation A17)

To calculate pðT j sÞ; we split the tree into two subtrees

(imagine ‘‘deleting’’ the branch on which themutant allele

arose). Note that we implicitly assume the site is bi-allelic,

such as under the infinite sites assumption. Let us label

these alleles A1and A2; these labels must be consistent

with the polarization of the GWAS summary statistics;

we assume that those are polarized w.r.t the A1 allele.

Within each of these subtrees, we find the coalescent times

UA1and UA2. Then

p

 
T jsÞ¼

Yn1�1

i¼1
p
�
Un�i ¼ uA1

i

��Un�iþ1 ¼ uA1
i�1; s; x0

!
3

3
Yn2�1

i¼1
p
�
Un�i ¼ uA2

i

��Un�iþ1 ¼ uA2
i�1; � s;1� x0

�
(Equation A18)

pðUk�1 ¼ tjUk ¼ t 0; s; f Þ¼ k

2
$

Nð0Þ
NðtÞXðtÞ$

exp

�
� k

2
ðLðt; s; f Þ�Lðt 0; s; f ÞÞ

�
(A19)

Lðt; s; f Þ¼
Z t

0

Nð0Þ
,

½NðtÞXðt; s; f Þ�$dt; (Equation A20)

where UA1and UA2 are measured in units of 2Nð0Þ
generations.
Data and code availability

Open-source code and documentation for PALM/J-PALM

is available at https://www.github.com/35ajstern/palm.

Formatted summary statistics/metadata and 1000 Ge-

nomes GBR selection likelihoods for ascertained SNPs are

available for download on DataDryad: https://datadryad.

org/stash/landing/show?id¼doi%3A10.6078%2FD11M62.
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Supplemental Information can be found online at https://doi.org/
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Web resources

1000 Genomes Phase 3 data, ftp://ftp.1000genomes.ebi.ac.uk/

vol1/ftp/phase3/

Alzheimer disease GWAS summary statistics, https://ctg.cncr.nl/

software/summary_statistics

BOLT-LMM summary statistics, https://alkesgroup.broadinstitute.

org/UKBB/UKBB_409K/

GWAS Atlas, https://atlas.ctglab.nl/

LT-FH summary statistics, https://alkesgroup.broadinstitute.org/

UKBB/LTFH/sumstats/

Neale Lab GWAS Round 2, https://docs.google.com/spreadsheets/

d/1kvPoupSzsSFBNSztMzl04xMoSC3Kcx3CrjVf4yBmESU/edit?

ts¼5b5f17db#gid¼227859291

PGC summary statistics, https://www.med.unc.edu/pgc/

download-results/

Relate software, https://myersgroup.github.io/relate/

SDS scripts, https://github.com/yairf/SDS
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