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Abstract

Motivation: The amount of IBD in an individual depends on the relatedness of the individual’s par-

ents. However, it can also provide information regarding mating system, past history and effective

size of the population from which the individual has been sampled.

Results: Here, we present a new method for estimating inbreeding IBD tracts from low coverage

NGS data. Contrary to other methods that use genotype data, the one presented here uses geno-

type likelihoods to take the uncertainty of the data into account. We benchmark it under a wide

range of biologically relevant conditions and show that the new method provides a marked in-

crease in accuracy even at low coverage.

Availability and implementation: The methods presented in this work were implemented in

C/Cþþ and are freely available for non-commercial use from https://github.com/fgvieira/ngsF-HMM.

Contact: fgvieira@snm.ku.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The inference of inbreeding levels is of central importance in many

studies of ecology, evolution and conservation biology. Inbred indi-

viduals often have lower fitness than offspring of unrelated parents

(Ebert et al., 2002) and a cumulative effect can reduce the popula-

tion growth rate and probability of persistence (O’Grady et al.,

2006). Furthermore, the study of inbreeding levels on natural popu-

lations can shed light into the species’ mating system and past his-

tory (Gibson et al., 2006; Stevens et al., 2012; Vieira et al., 2013)

and is important for understanding the distribution of genetic vari-

ation within and among populations and, consequently, the effect of

natural selection (Charlesworth, 2003).

In addition to the genome-wide inbreeding coefficient of an indi-

vidual, further information can be gained by examining the distribu-

tion of inbred (or Identity By Descent; IBD) regions throughout the

genome. These regions are usually organized into tracts of homozy-

gous genotypes that recombination breaks down over time. Their

number and lengths are tightly coupled to population genetics proc-

esses, from fine-scale population structure, effective population size,

selfing and recombination rate, to age and type of inbreeding and

even relatedness of the parents (Gibson et al., 2006). Briefly, short

tracts reflect old inbreeding in the population (possibly due to large

effective population sizes), while long tracts may reflect recent in-

breeding either due to small effective population sizes or familial

matings. Under certain conditions and carefully designed experi-

ments, the identification of IBD tracts can even be used for other

types of analyses, like mapping of recombination breakpoints from

back-crossed individuals.

As common descent is always guaranteed for any pair of hom-

ologous loci, IBD is often defined relative to an expectation under a

certain model. An example is IBD due to recent familial relation-

ships relative to the expectation of genetic identity for two individ-

uals sampled at random from the population. A common

operational definition of inbreeding is the excess of homozygosity

compared to the Hardy–Weinberg Equilibrium expectation. This

corresponds to classical population genetic definitions dating back

to Wright (1922) and is in effect the definition used here and in

many previous papers (Leutenegger et al., 2003; Vieira et al., 2013),
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although inferences are done in a single individual by combining in-

formation from multiple sites.

Previous studies have addressed the problem of inferring IBD

tracts using Hidden Markov Models (HMMs) (Leutenegger et al.,

2003) based on individual genotype data. Current Next-Generation

Sequencing (NGS) technologies can sometimes produce data with

high error rates due to random sampling of homologous base pairs,

sequencing, or alignment errors (Nielsen et al., 2011; Ross et al.,

2013). Furthermore, due to budget constraints, many NGS studies

rely on low or medium depth of coverage sequence data (< 5� per

individual), causing genotype calling to be made with a considerable

amount of uncertainty. The uncertainty, especially from low depth

data, can greatly bias inferences of IBD tracts, as sites with sequenc-

ing errors can be mistaken for heterozygote sites thereby breaking

up the tracts into smaller segments.

Many recent methods rely on probabilistic frameworks to ac-

count for these errors and accurately call SNPs and genotypes,

even at low coverage (Li, 2011; Martin et al., 2010; Nielsen et al.,

2012). These methods integrate the base quality score together

with other error sources (e.g. mapping or sequencing errors) to cal-

culate an overall genotype likelihood (DePristo et al., 2011; Li

et al., 2009a,b). These likelihoods can be used directly or com-

bined with priors to take into account the uncertainty associated

with the data (for reviews see Nielsen et al., 2011; O’Rawe et al.,

2015).

There are several methods available to infer inbreeding coeffi-

cients, but only ngsF (Vieira et al., 2013) is suitable for low coverage

NGS data; however, this program only estimates genome-wide in-

breeding levels and is thus incapable of inferring IBD tracts. In this

paper, we present a new method to estimate IBD tracts from low-

coverage NGS data. We evaluate its accuracy using extensive bio-

logically relevant simulations and apply it to two real datasets, one

consisting of populations from the HAPMAP and 1000 Genomes

projects, and another consisting of varieties of wild and domesti-

cated rice. When comparing against genotype-based methods, the

method presented here performs considerably better when estimat-

ing IBD tracts and per-individual inbreeding coefficients for cover-

ages < 3�.

2 Methods

2.1 Optimization and decoding
To optimize the parameters from our model (Fig. 1), we adopted a

Maximum Likelihood iterative approach. Using F for the per-indi-

vidual inbreeding coefficient, a for the transition rate, f for the allele

frequencies, p for the most probable path (i.e. the inferred IBD

tracts) and Li for the likelihood at iteration i:

(0) Initialization:

Set i¼0.

Initialize F, a and f from a uniform distribution.

Calculate initial likelihood L0.

(1) Given f, jointly estimate F and a through the L-BFGS-B

algorithm.

(2) Given F and a, estimate f using an EM algorithm.

(4) Check convergence:

Set i ¼ iþ 1.

Calculate Likelihood Li.

If Li � Li�1 > epsilon go to (1).

(5) Infer the most probable path p (decoding) with the Viterbi

algorithm.

In more detail, on step (1), the L-BFGS-B algorithm (Zhu et al.,

1997) uses numerical derivatives and a new backward pass for each

evaluation of the likelihood, that is in turn calculated from the for-

ward algorithm. As for step (2), the EM algorithm was adapted

from ANGSD (Korneliussen et al., 2014) and estimates f directly

from the genotype likelihoods using, as prior, the expected genotype

frequencies under a certain inbreeding level; this is calculated from

the probability of a given site being IBD (calculated from the for-

ward and backward algorithms).

2.2 NGS data simulation
We performed extensive simulation to assess the performance of our

method when estimating all parameters. Due to computational con-

straints, we simulated mapped sequencing data directly (rather than

raw sequencing reads) similarly to previous studies (Fumagalli et al.,

2013; Kim et al., 2011; Vieira et al., 2013). When simulating geno-

types, we have to account for the IBD state in each site. Therefore,

we first sampled the true IBD states directly by implementing a

Markov model (Fig. 1), taking into account the distance between

SNPs, per-individual inbreeding coefficient (F) and a transition rate

(a). Allele frequencies were sampled uniformly between 0 and 0.5.

We then sampled genotypes given the allele frequencies and the pre-

viously simulated IBD states. Third, and similarly to previous stud-

ies, we sampled the number of reads from a Poisson distribution

with mean equal to the specified individual sequencing coverage and

simulated sequencing errors by changing each read base to any

of the other three nucleotides with probability �=3, where � repre-

sents the error rate. We then calculated the genotype likelihoods

assuming the GATK model (DePristo et al., 2011). We note that,

since we use the same model to simulate the data and make infer-

ences, results from simulated data represent best case scenarios.

We simulated 10 000 variable sites with distances sampled from

a normal distribution with a mean of 100 000 base pairs and stand-

ard deviation equal to 1/3 of the mean. We assumed sample sizes of

10, 30 and 50 individuals, and average sequencing coverages of 0.5,

1, 3, 5 and 10�, with error rates of 0.5, 1 and 2%, and varied the in-

breeding coefficients from 0.0 to 1.0 in steps of 0.1, for a total of

495 combinations. With these parameter choices we focused on

datasets with small sample sizes and low coverage, for which infer-

ence is harder, used realistic error rates (Glenn, 2011), and covered

biologically relevant scenarios of inbreeding from <0.07 in humans

(Carothers et al., 2006) and �0:3 dogs (Gray et al., 2009; Kirkness

et al., 2003) to 0.4–0.98 in rice (Kovach et al., 2007) and 0.757 in

wasps (Chapman and Stewart, 1996).

Fig. 1. HMM model. Illustration of the HMM model used. We used a two-state

model to represent IBD and IBD (not IBD) genomic regions. The model

switches between states with probability P ðys�1jys Þ and each state can emit

the three different genotypes with probability P ðgjys Þ (where g represents a

genotype and ys the most probable state at site s)
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2.3 Genotype calling
Genotypes were called following a Maximum-A-Posteriori (MAP)

approach by internally setting the genotype with the highest poster-

ior probability to 1 and the remaining genotypes to 0. Genotype’s

posterior probability was calculated from the genotype likelihood

together with a prior (Li, 2011; Nielsen et al., 2011, 2012), where

the latter was either (i) a uniform distribution (GL_CG), the ex-

pected genotype frequencies under (ii) HWE (HWE_CG) or (iii)

HWE assuming an inbreeding coefficient (HWEþF_CG). In this

work, the inbreeding priors were calculated with the program ngsF

Vieira et al. (2013), that estimated genome-wide inbreeding coeffi-

cients from low coverage NGS data. It is worth noting that

under this genotype calling approach, we will only have undeter-

mined (i.e. missing) genotypes when using a uniform prior since, in

face of equally likely genotypes, the prior alone will determine the

outcome.

2.4 Metric of accuracy
We calculated error rates associated with all estimated parameters:

F, a, IBD tract (p), allele frequencies (f) and genotype calls (g). For

genotype calls, the associated error was calculated as the proportion

of miscalled genotypes, while for the other parameters we used the

RMSD defined as:

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S

X
S
ðXtrue �XestÞ2

r
(1)

where Xtrue and Xest are the true and estimated values of the param-

eters, and S the total number of estimates (number of individuals for

F and a, and all sites across all individuals for p; missing values were

ignored. All plots were made using R package ggplot2 (Wickham,

2009).

2.5 Analysis of real data
2.5.1 Human dataset

We selected individuals from the LWK (Luhya in Webuye, Kenya)

and GIH (Gujarati Indian from Houston, Texas) populations pre-

sent in both the HAPMAP (The International HapMap 3

Consortium, 2010) and 1000 Genomes (The 1000 Genomes Project

Consortium, 2012) datasets, on a total of 86 and 94 samples from

the LWK and GIH, respectively, with sequencing coverages ranging

from 3:13� up to 13:98�, with an average of 6:2� (Supplementary

Tables S1 and S2). For computational reasons, we restricted our

analyses to chromosomes 8 and 11 on the LWK and GIH popula-

tions, respectively (Supplementary Fig. S6). We selected all sites with

a Minor Allele Frequencies (MAF) of at least 0.05 and, since our

method does not explicitly account for linkage disequilibrium (LD)

among sites, devised two datasets to assess the impact of LD on the

IBD inferences: one composed of all sites in the HAPMAP dataset

(HAPMAP) and another (HAPMAP-LD) where sites in LD were

pruned with PLINK (Purcell et al., 2007) based on pairwise LD

(–indep-pairwise 50 5 0.2). To assess the impact of sample size and

sequencing coverage on the estimates, apart from the original 1000

Genomes dataset, we also analyzed downsampled datasets. For the

coverage we downsampled the original dataset to 50 and 25% of

the original total number of reads; for the sample size, we down-

sampled it to 15, 30 and 50 individuals. We extracted the sites for

each of these datasets and, using the originally mapped reads, used

‘ANGSD’ (Korneliussen et al., 2014) to calculate genotype likeli-

hoods (-baq 1 -C 50 -minMapQ 15 -minQ 10 -minInd (N_IND/2)

-GL 1 -doGlf 2 -doMajorMinor 1 -doMaf 1 -SNP_pval 1e-6).

Briefly, we used the SAMtools formula (Li et al., 2009a) to calculate

the genotype likelihoods using only reads with a root mean square

(RMS) mapping quality>15, and sites with a base quality >10,

where data was present in at least half the individuals and with a

high probability of being SNPs. To assess the accuracy of our

method, we inferred IBD tracts on all of the above mentioned 36

datasets (2 populations, 3 sample sizes, 3 coverages and 2 sets of

sites) and calculated the proportion of sites with correctly assigned

IBD states. Since we don’t know the true IBD state of these samples,

benchmarked the performance of our method dealing with low-

coverage data (using genotype likelihoods) relative to the perform-

ance of full genotyping data, using the our HMM algorithm in both

cases.

2.5.2 Rice dataset

For the rice example, we used the 113 wild, 72 indica and 79 japon-

ica (both tropical and temperate) accessions from the MiniCore col-

lection (Wang et al., 2016). We used the original data comprising 52

838 SNPs evenly distributed across the rice genome. Briefly, geno-

type likelihoods were calculated with ANGSD (options ‘-baq 1 -C

50 -minMapQ 20 -minQ 20 -GL 1 -doGlf 2’) and called SNPs with

a significance level of approx. 0.0001 for rejecting the hypothesis of

the site being non-polymorphic. We restricted our analyses to sites

with a MAF of at least 0.05 and, to account for LD, we randomly

selected a representative SNP for every 5 kb region. In this case we

simply inferred the IBD tracts, since we don’t have a high quality ref-

erence to compare to. Since the level of population structure of these

species is unclear, we analyzed the wild, indica and japonica acces-

sions separately (Supplementary Figs S7–S9).

3 Results

3.1 Model for IBD tracts
To estimate Identity By Descent (IBD) tracts along a genome, we

extended the approach of Leutenegger et al. (2003) which

uses an HMM model with two hidden states (not inbred, y ¼ 0 or

IBD; inbred, y ¼ 1 or IBD) for each polymorphic site (s) of the

genome (Fig. 1). However, instead of the observed data being

genotypes, we will use genotype likelihoods directly to infer

IBD regions (or the most probable hidden state path p̂) across the

genome.

The transition probabilities between site s and s – 1 represent the

probability of switching between IBD states (y 2 f0; 1g) and can

be obtained from an instantaneous rate matrix Q. This rate matrix

is naturally parametrized in terms of an inbreeding coefficient (F)

and a transition rate per Mb (a) which depends on the recombin-

ation rate and the time to common ancestor(s) in the underlying

pedigree:

Q ¼

StateðyÞ IBD IBD

IBD 1� aF aF

IBD að1� FÞ 1� að1� FÞ

(2)

However, we note that the a parameter can only be estimated

when 0 < F < 1. Based on the instantaneous rate matrix, the
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transition probabilities of the continuous time Markov chain are

given by Leutenegger et al. (2003):

Pðys ¼ 0jys�1 ¼ 0Þ ¼ ð1� e�atÞð1� FÞ þ e�at

Pðys ¼ 0jys�1 ¼ 1Þ ¼ ð1� e�atÞð1� FÞ

Pðys ¼ 1jys�1 ¼ 0Þ ¼ ð1� e�atÞF

Pðys ¼ 1jys�1 ¼ 1Þ ¼ ð1� e�atÞF þ e�at

(3)

The emission probabilities at site s, PðXsjysÞ, represent the prob-

ability of the observed data (i.e. overlapping reads and correspond-

ing base qualities) at that site (Xs) given the current state (ys). If we

were dealing with called genotypes, this would be straightforward

since the observed data would be the genotype but here, since we are

dealing with genotype likelihoods, we have to integrate over all pos-

sible genotypes:

PðXsjysÞ ¼
X

g

PðXsjgÞPðgjysÞ (4)

where for site s, PðXsjgÞ is the genotype likelihood for genotype g

and PðgsjysÞ the probability of observing genotype g on state ys.

Assuming that all sites are bi-allelic with two alleles represented by

A and a and, there are only three possible genotypes, so:

PðAAjysÞ ¼ ð1� fsÞ2 þ fsð1� fsÞys

PðAajysÞ ¼ 2fsð1� fsÞ � 2fsð1� fsÞys

PðaajysÞ ¼ f 2
s þ fsð1� fsÞys

(5)

where ys is the IBD state and fs the minor allele (a) frequency at site

s, which is also estimated from the data (see below). From a set of

individuals, we jointly estimate the allele frequencies f, and the per-

individual inbreeding coefficients F and transitions rates a.

3.2 Estimating inbreeding from simulated data
To assess the accuracy of our method, we applied it to a simulated

dataset covering a wide range of biologically relevant scenarios. For

each simulated scenario, we used our HMM method and assessed

the estimates’ accuracy when based both on genotype likelihoods

(GL) and called genotypes (GL_CG, HWE_CG and HWEþF_CG).

On every case, we estimated the per-individual inbreeding coeffi-

cient (F), transition rate (a), most probable path (p̂) and allele fre-

quencies (f), together with their associated RMSD.

3.2.1 Estimating IBD tracts and transition probabilities

We benchmarked the accuracy of the new method on the above

mentioned simulated dataset for inferring IBD tracts (p̂). In all cases

we used the Viterbi algorithm to infer IBD tracts, i.e. the most

probable path between the model’s two states. Overall, the analyses

based on genotype likelihoods directly vastly outperform analyses

based on called genotypes (Fig. 2 and Supplementary Fig. S1). In

fact, we get broadly the same accuracy level at 0:5� from genotype

likelihoods than at 3� when calling genotypes accounting for in-

breeding. Calling genotypes with priors that do not take inbreeding

into account (uniform or HWE priors) reduces the accuracy of the

estimates further, specially at low depth sequencing.

When inferring the transition rate (a) the overall trend is the

same as for IBD tracts, except that all methods based on called geno-

types perform quite poorly for coverages < 3� and, with higher

error rates, even < 5� (Fig. 3 and Supplementary Fig. S2). When

calling genotypes assuming HWE in particular, it is impossible to

make any inference at coverages < 3� (and why data points are

missing for these coverages). Due to the extremely low coverage, the

HWE prior will lead to high genotype calling errors (30%;

Supplementary Fig. S5) that disrupt IBD tracts and preclude their

identification. For any given depth, inferences directly from geno-

type likelihoods always outperform all other methods, even looking

across different depths.

3.2.2 Estimating individual inbreeding coefficients

The individual inbreeding coefficients is given from the model and,

as previously shown, can be used as a prior in Bayesian analyses

(Vieira et al., 2013) and can be particularly important when dealing

with low depth-of-coverage NGS datasets. Overall we see that all

approaches perform quite well at a sequencing coverage depth of

10�, except when assuming HWE on highly inbred samples. This is

true even at > 5� (Fig. 4 and Supplementary Fig. S3). At < 3� the

two methods based on called genotypes perform quite poorly, illus-

trating the biases that this type of approach entails when dealing

with low coverage data. At this coverage range, only genotype likeli-

hood-based methods have acceptable accuracies, with the new

method presented here slightly outperforming ngsF (Vieira et al.,

2013) at low sequencing depth (< 3�) and small sample sizes

(n � 30).

3.2.3 Estimating allele frequencies

Allele frequencies form the backbone of most population genetics

methods and, as such, their accurate estimation is of high import-

ance. The method presented here was adapted from ANGSD and, as

such, performs similarly. Overall, genotype likelihood-based meth-

ods seem to perform better than those based on called genotypes

and be somewhat robust to various levels of inbreeding and priors

(Supplementary Fig. S4).
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Fig. 2. Estimation of IBD tracts. Performance of the HMM method to infer IBD tracts for a sample size of 30 individuals, a transition rate of 0.01 and 10, 000 variable

sites simulated with a 0.5% error rate. Columns represent the different analytical approaches, from genotype likelihoods (1st column), called genotypes assuming

no prior (2nd column) and called genotypes assuming a prior based on genotype frequencies under HWE (3rd column) or a prior assuming inbreeding (last col-

umn). The different lines represent RMSD under different simulated sequencing depths
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3.2.4 Effect of inbreeding on genotype calling

A common downstream analysis of NGS data is the identification of

genotypes at each position for all individuals (genotype calling). The

methods developed here can provide improved Bayesian genotype-

calling in low depth-of-coverage data, by providing a more appro-

priate prior that takes inbreeding into account. However, several

factors in addition to inbreeding, can affect genotype calling, includ-

ing high error rates, sequencing coverage and small sample sizes. To

assess their impact, we calculated genotype posterior probabilities

with our HMM method, called genotypes, and compared these with

the previously mentioned called genotypes datasets: GL, HWE_CG

and HWEþF_CG (see Section 2). All methods show overall com-

parable error rates for calling genotypes (Supplementary Fig. S5),

but assuming a uniform prior gives a high proportion of undeter-

mined genotypes (e.g. 60 and 37% at 0:5� and 1�, respectively). If

we use an informative prior, the undetermined genotypes’ levels are

drastically reduced. Assuming HWE yields a relatively constant

error rate across inbreeding levels but, in highly inbred samples,

being able to incorporate inbreeding into the prior (either local or

global) can drastically reduce genotype calling errors by as much as

79% (from 0.215 to 0.046) when analysing 10 fully inbred individ-

uals at 5� (Supplementary Fig. S5).

Dividing genotypes into homozygous and heterozygous calls, it

is clear they are differently affected. Homozygous genotypes tend to

have constant error rates independently of inbreeding levels, except

when assuming HWE, where higher inbred samples have higher

error since the prior makes it difficult to call low frequency homozy-

gotes. Using a uniform prior gives very low error rates but at the ex-

penses of high levels of undetermined genotypes, while both

informative inbreeding priors have similar performances.

Heterozygous genotypes are typically the most difficult geno-

types to call and, as such, have considerably higher error rates. In

this case, a uniform prior is the worst method with both high error

rates and undetermined genotypes’ levels. Assuming an inbreeding

prior performs similarly to HWE for low inbred samples but per-

forms worse for highly inbred ones (i.e. 0:5 < F < 0:9), since the

prior penalizes heterozygote genotypes. In this case, the method pre-

sented here presents another advantage as it actually allows the use

of different priors for regions that have been inferred to be IBD or

IBD. To sum up, the method largely has the advantages of an in-

breeding prior for homozygote genotypes and a HWE prior for het-

erozygotes genotypes in non-IBD regions.

3.3 Application to real data
In addition to simulated data, we also analyzed two publicly avail-

able datasets of low coverage NGS data: a human dataset composed

of populations from HAPMAP and the 1000 Genomes projects, as

well as a recently published rice dataset.

3.3.1 HAPMAP and 1000 genomes human datasets

In the analyses of the human dataset, we took advantage of the fact

that some individuals genotyped for the HAPMAP project (The

International HapMap 3 Consortium, 2010) have also been

sequenced at low coverage on the 1000 Genomes (The 1000

Genomes Project Consortium, 2012). This gives us a perfect test

dataset, as we have both low-coverage sequencing data and high

quality genotypes to use as reference. We selected the LWK and

GIH populations, since they are included in both datasets, both

were expected to be composed of unrelated individuals, but where
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recent studies have shown some history of inbreeding (e.g. Gazal

et al., 2015; Stevens et al., 2012).

We inferred IBD tracts on the 1000 Genomes populations com-

paring results across several combinations of sample size and cover-

age, with and without LD pruning (see Section 2). We assume

HAPMAP genotypes are called correctly and, as such, that IBD

tracts inferred from them represent the gold standard. Comparing to

it, we show that the HMM method can accurately infer IBD tracts

even under cases of extremely low coverage and small sample sizes

(1/4 of 1000 Genomes coverage and 30 individuals) (Supplementary

Fig. S6). In fact, both sample size and coverage seem to have a rela-

tively small effect on IBD inference (the latter when sites in LD have

been pruned), in comparison to the presence of sites in LD. That

said, pruning of sites in LD can greatly reduce error rates by as

much as an order of magnitude, from (e.g.) an average proportion of

miss-identified sites of 0.182–0.020, when analysing 30 individuals

from the GIH population at 1/4 of their original coverage.

3.3.2 MiniCore rice dataset

As a second example, we used the recently published MiniCore data-

set, composed of both domesticated and wild accessions sequenced

at low coverage (Wang et al., 2016). There are several species of

wild rice but the O. rufipogon species complex is thought to be the

closest to domesticated rice (Oryza sativa) (e.g. Grillo et al., 2009;

Wei et al., 2012), which is further divided into two subspecies (O. s.

japonica and O. s. indica). Wild and domesticated accessions have

markedly different selfing rates, ranging in the wild between 50 and

95% (Gao et al., 2002; Morishima et al., 1984; Oka, 1988; Phan

et al., 2012), and in cultivated between 95 and 100%.

Our estimates show wild rice with a wide range of inbreeding

values, from totally outbred to almost fully inbred (Supplementary

Fig. S7), while cultivated rice accessions were all almost totally

inbred. These estimates are also reflected in the IBD tract inferences,

in which cultivated accessions have IBD tracts spanning whole

chromosomes (Supplementary Figs S9 and S8).

4 Discussion

The levels of inbreeding in an individual is an important parameter

in population genomic studies, since it can reflect mating system,

selfing rates, population size and past population history.

Theoretically, the best way to infer it is through the pedigree, but

pedigrees are not available in much studies. However, even in these

cases, inferences based on pedigrees can be biased due to incomplete

knowledge of the pedigree. In addition, pedigrees provide expected

levels of inbreeding, but these may differ from true genetic levels of

inbreeding due to the stochasticity of allelic segregation and recom-

bination. This has been demonstrated by recent analyses identifying

higher than expected ROH prevalence in unrelated individuals from

outbred populations (Gibson et al., 2006; The International

HapMap Consortium, 2007), supporting a recent claim that esti-

mates based on markers are more accurate than expected values

inferred from pedigrees (Kardos et al., 2015).

Here, we have developed a method that can reliably estimate in-

dividual Identical By Descent (IBD) tracts and inbreeding coeffi-

cient, directly from genomic data, without requiring any knowledge

of the underlying genealogy. Other methods exist for this (Hall

et al., 2012; Leutenegger et al., 2003) but all were developed for

SNP chip data, which has much lower error rates than low coverage

NGS data. NGS technologies have revolutionized genetics by pro-

viding fast, cheap and reliable large-scale DNA sequencing data.

However, the per base pair error rate in NGS data is still consider-

ably higher than in Sanger sequencing or chip-based genotyping

technologies (Glenn, 2011). As a consequence, researchers usually

sequence at high sequencing depths but this comes at an increased fi-

nancial, computational and storage cost. Furthermore, due to the

ever-growing demand for larger sample sizes, many NGS studies

rely on low coverage NGS sequence data (< 5�). As such, the avail-

ability of methods that can properly handle this data will help re-

searchers make more cost-effective choices in the trade-off between

sample size and sequencing depth.

The method presented here facilitates the estimation of IBD

tracts from low coverage NGS data. We evaluate its performance

through both simulated and real data analyses. When compared to

genotype-calling-based methods, the improvement in accuracy when

estimating IBD tracts and individual inbreeding coefficients is con-

siderable for sequencing depths < 3�. Apart from the previously

mentioned use of this methods in population genomic studies, we

note that there is another possible application of the method: map-

ping of recombination breakpoints in backcrosses between inbred

lines. In backcross data, each individual in the backcross generation

effectively has an inbreeding coefficient of F¼0.5. The method pre-

sented here allows the estimation of recombination rates for such

data by estimation of the parameter a. More importantly, the poster-

ior decoding algorithm provides estimates of the genomic location

of recombination breakpoints. This provides, in combination with

low-coverage NGS sequencing of a backcross generation, an effi-

cient design for mapping recombination breakpoints from model

species such as yeast.
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