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ABSTRACT Admixture, the mixing of genetically distinct populations, is increasingly recognized as a fundamental biological process.
One major goal of admixture analyses is to estimate the timing of admixture events. Whereas most methods today can only detect the
most recent admixture event, here, we present coalescent theory and associated software that can be used to estimate the timing of
multiple admixture events in an admixed population. We extensively validate this approach and evaluate the conditions under which it
can successfully distinguish one- from two-pulse admixture models. We apply our approach to real and simulated data of Drosophila
melanogaster. We find evidence of a single very recent pulse of cosmopolitan ancestry contributing to African populations, as well as
evidence for more ancient admixture among genetically differentiated populations in sub-Saharan Africa. These results suggest our
method can quantify complex admixture histories involving genetic material introduced by multiple discrete admixture pulses. The new
method facilitates the exploration of admixture and its contribution to adaptation, ecological divergence, and speciation.
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THERE is an increasing appreciation for the importance of
admixture, an evolutionary process wherein genetically

divergent populations encounter each other and hybridize.
Admixture has shaped genetic variation within natural plant,
animal, and human populations (Rieseberg et al. 2003; Pool
et al. 2012; Hufford et al. 2013; Hellenthal et al. 2014;
Sankararaman et al. 2014). If an admixture event has oc-
curred relatively recently, we can use local ancestry inference
methods (LAI) to trace the ancestry of discrete genomic seg-
ments, called “ancestry tracts,” back to the ancestral popula-
tions from which they are derived (Pool and Nielsen 2009;
Price et al. 2009; Sankararaman et al. 2012; Maples et al.
2013; Corbett-Detig and Nielsen 2017). Due to ongoing re-
combination within admixed populations, the lengths of
these ancestry tracts are expected to be inversely related to
the timing of admixture. Therefore, it is possible to estimate
the timing of admixture events by inferring ancestry tract
lengths (Pool andNielsen 2009; Gravel 2012), or by evaluating

the rate of decay of linkage disequilibrium (LD) among ances-
try informative alleles (Moorjani et al. 2011; Loh et al. 2013).

The latter approach isbasedonmodelingexpecteddecayof
LD among alleles that are differentiated between admixed
populations. Briefly, even if there is little LD in the ancestral
populations themselves, admixture will create admixture LD
(ALD) within the admixed population among alleles whose
frequencies are differentiated between ancestral populations
(Chakraborty andWeiss 1988). The decay of ALD is expected
to be approximately exponential, with a rate parameter that
is proportional to the timing of admixture. Two popular
methods using this approach, ROLLOFF (Moorjani et al.
2011) and ALDER (Loh et al. 2013), model the decay of
two-locus ALD to estimate single-pulse admixture models.
Admixture histories may be more complex, including multi-
ple distinct admixture events (Gravel et al. 2013) and multi-
ple ancestral populations (Pasxaniuc et al. 2009), suggesting
that some of these methods may not be suitable for deeply
characterizing the admixture history of many admixed pop-
ulations (Figure 1), although recent work suggests it is pos-
sible to detect multiple admixture pulses by modeling LD
decay as a mixture of two exponential distributions
(Pickrell et al. 2014). Additionally, it may be possible to ex-
tend LD decay approaches using three-point LD to estimate
the timing of two admixture pulses in populations with more
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complex admixture histories (Liang and Nielsen 2016). Fi-
nally, wavelet-based techniques can be used to infer the re-
lationship between SNPs along a chromosome to estimate the
time of admixture and admixture proportions (Sanderson
et al. 2015; Pugach et al. 2016).

A second set of approaches uses the lengths of LA tracts
across the genomes of admixed individuals to estimate the
timing of admixture events (Pool and Nielsen 2009; Gravel
2012; Gravel et al. 2013; Ni et al. 2018). Here, the complexity

of admixture models that can be accommodated depends on
the accuracy of the estimated ancestry tract length distribu-
tions within an admixed population. However, thesemethods
require that LAI be performed prior to estimating population
admixture models. LAI necessitates a priori assumptions
about the admixture model itself, as such assumptions are a
prerequisite—implicitly or explicitly—for most LAI frame-
works that have been developed to date. These assumptions
have the potential to bias the outcomes of LAI and can affect

Figure 1 A schematic of (A) a single-pulse model with
two ancestry types, (B) a two-pulse model with two
ancestral populations, and (C) a two-pulse model with
three ancestral populations. Ak is considered the an-
cestry type of the resident population and would be A2

in (A) and A3 in (B) and (C). Note that A1 and A2 may
come from the same ancestral population, but are
modeled as independent states. The gray shaded re-
gion draws attention to the admixed population(s).
Time since admixture pulses are measured in genera-
tions and are denoted as t1 and t2; where t1 occurs
more recently than t2: The time of sampling is repre-
sented by t0; where t0 ¼ 0 if sampling occurred in the
present. The proportion of ancestry in the admixed
population that entered during an admixture pulse is
denoted as m1 and m2: Colors represent genetically
distinct ancestry types. Local ancestry across a chromo-
some after admixture is represented by horizontal bars
at the bottom of each subplot.
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admixture model selection (Sankararaman et al. 2008; Pool
et al. 2012; Corbett-Detig and Nielsen 2017). Additionally,
LAI methods require accurately phased chromosomes—an un-
likely prospect for species with low levels of LD (Bukowicki
et al. 2016) and for relatively ancient admixture events where
the rate of phasing switch errors would be similar to the rate of
transitions between ancestry types. Therefore, it is often pref-
erable to estimate the timing of admixture events and the LA of
a sample simultaneously (Corbett-Detig and Nielsen 2017).
Finally, modern sequencing techniques often sequence to light
coverage, thus necessitating a tool that can accommodate read
pileup data rather than genotypes.

Prior to this study, we developed a framework for simul-
taneously estimating admixture times and LA across the
genomes of admixed populations (Corbett-Detig and Nielsen
2017). Our method can estimate LA and admixture times in a
hidden Markov model (HMM) framework assuming a single
admixture pulse model. Here, we extend this method to
admixed populations that have experienced multiple ances-
try pulses in their recent evolutionary past (Figure 1). We
evaluate the performance of this approach using extensive
forward-in-time admixture simulations. Finally, we apply this
method to study admixed Drosophila melanogaster popula-
tions in sub-Saharan Africa, and we find evidence consistent
with a recent single pulse of cosmopolitan admixture into
African populations as well as evidence for more ancient ad-
mixture among genetically differentiated populations in sub-
Saharan Africa.

Methods

Coalescent simulations

We simulated ancestral population genetic variation using
the coalescent simulation software package MACS (Chen
et al. 2009). Briefly, to consider a simplified ancestral process,
we consider a model where a population, initially of size 2N,
subdivided into three daughter populations of identical size,
2N. To assay a range of genetic divergence among the daugh-
ter populations, we performed replicate simulations where
we allowed populations to diverge (D in the command line
below) for 0.05, 0.1, 0.25, 0.5, and 1 Ne generations. Note
that the functionally relevant parameter for LAI using this
approach is probably related to allele frequency changes be-
tween the ancestral populations, and therefore to the density
of ancestry informative markers along the genome, rather
than to the timing of divergence. For example, a population
bottleneck would result in rapid and dramatic allele fre-
quency differences despite a short divergence time. Note also
that alternative divergence models will also impact the dis-
tribution of LD among markers, underscoring the importance
of considering each unique model when applying this ap-
proach for admixed model estimation. We therefore used
the following command line for all simulated populations:

$ macs 600 100000000 -i 1 -h 100 -t 0.001 -r 0.001 -I 3 200
200 200 0 -ej D 2 1 -ej D 3 1.

This will simulate a single chromosome of length 100 Mb
with a per-site theta of 0.001 and equal recombination rate.
Therefore, these simulations could resemble a reasonably
sized mammalian population. This will output 200 chromo-
somes per ancestral population, and for all admixture simu-
lations, we used the first 100 as the reference panel, and the
second 100 to simulate genetic variation across admixed
chromosomes.

Admixture simulations

We simulated admixed populations using the forward-in-time
admixture simulation program, SELAM (Corbett-Detig and
Jones 2016). We first explored the levels of LD pruning that
are necessary for producing unbiased estimates of admixture
times using two-population, single-pulse simulations. All
simulations for LD pruning optimizations were run with an-
cestry proportions 0.5 and 0.5, and with an admixed popu-
lation size of 5000 males and 5000 females.

We then simulated admixture models with three ancestral
populationmodelswhere the resident population contributed
1=2 of the total ancestry, and each admixture pulse contrib-
uted 1=4th of the total ancestry to the final admixed popula-
tion. Therefore the first pulse, in forward time, contributed
1=3 of the admixed population and then had 1=4th of that
ancestry replaced by the subsequent pulse. All simulations
were performed across the range of divergence times that
we simulated for each ancestral population.

Read simulation

We simulated short read data for each admixed individual
following the approach of Corbett-Detig and Nielsen (2017).
Briefly, reads are drawn binomially from each samples’ geno-
type and read depths from a Poisson distribution with mean
equal to 2. That is, we simulated 23 sequencing depths to
represent a likely use case of this software where individuals
are sequenced to relatively light coverage.

Drosophila simulation

We have previously used this framework to simulate data
consistent with the ancestral populations of D. melanogaster,
following the coalescent simulation approach of Corbett-
Detig and Nielsen (2017). All other features of the simulated
Drosophila dataset are similar to those above, except that we
simulated genotypes rather than short read pileup data. We
did this because the dataset that we used is sequenced to
sufficiently high depths so as to preclude most uncertainty
in short read data (Lack et al. 2015, 2016).

Robustness to smaller sample sizes, incorrect
recombination rates, and ancestral
population divergence

We simulated varying sample sizes, erroneous recombination
maps and reference population divergences to characterize
our method’s ability to correctly estimate the timing of ad-
mixture. We simulated single admixture pulses 20, 40, 60,
and 80 generations ago using sample sizes of 10, 25, and 50.
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We performed 20 replicate simulations. For all robustness
checks, we used simulated data where the ancestral popula-
tions were 0.25 Ne generations divergent from one another.

To test for the effect of erroneous recombination maps, we
modified the recombination map every 5 Mb using the fol-
lowing approach. For each window, we do a draw of D from
uniform (12 d, 1þ d) where d is 0.25, 0.5, 0.75, or 1. We
multiplyD by the actual recombination rate at that window to
obtain our modified recombination rate. For example, where
d is 1, D is chosen from a uniform distribution of range (0,2).
Where d is 0.25, D is chosen from a uniform distribution of
range (0.75,1.25). Thus, the larger the value of d, the more
the recombination map will be perturbed.

We also tested our approach under scenarios where one of
the reference populations used to estimate the timing of
admixture is not the actual source population contributing
to the admixed population. We estimated the timing of single
and double pulse admixture events using a reference popu-
lation thatwas 0.005, 0.01, 0.02, 0.05, and0.1Ne generations
diverged from the real source population. We simulated sin-
gle pulse data where the timing of admixture occurred 20,
40, 60, and 80 generations ago. We fit both single and double
pulse admixture models to these data, and computed sum-
mary statistics describing the fit of single pulse model to
single pulse data. In addition, we simulated double pulse
data where the timing of the most recent admixture pulse
occurred 20, 40, 60, and 80 generations ago, and where
the most distant admixture pulse always occurred 100 gener-
ations ago. We computed summary statistics describing the
fit of two pulse models to these data.

Comparison to ALDER

We estimated the timing of single- and double-pulse admix-
tures using ALDER v1.02 (Loh et al. 2013) and MALDER v1.0
(Pickrell et al. 2014), respectively. We evaluated the results of
our approach, ALDER, and MALDER by performing 20 repli-
cates of each admixture scenario, and computing the NRMSE
for estimated admixture time and admixture proportion. We
simulated single pulse admixture data using two reference
populations of 50 individuals each and an admixed population
of 50 individuals. Similarly, we simulated double pulse admix-
ture data by adding a third reference population of 50 individ-
uals. The timings of the single- and double-pulses are identical
to those outlined above, and can be found explicitly in Sup-
plemental Material, Tables S13 and S14. ALDER andMALDER
were run with a maxdis of 0.1. We note that the default set-
tings of ALDER and MALDER could not detect admixture
events occurring .100 generations ago. Thus, we extended
the minimum distance (mindis) to 0 for any scenario with an
admixture event occurring .100 generations ago. Extending
the minimum distance to 0 may confound estimated admix-
ture times because ancestral LD will have a greater impact on
short scales, but appeared to produce better admixture time
estimates for the scenarios we considered. We note that there
may be other ways to improve ALDER and MALDER’s perfor-
mance in detecting ancient admixture events.

Drosophila sample application

We obtained D. melanogaster genotype data for natural isolates
from the Drosophila Genome Nexus (Lack et al. 2015, 2016),
which curates data from.1000 natural isolates of this species.
We used the recommended masking packages supplied for that
site for all samples in reference populations. For SD,weused the
ZI population, for RGwe used a set of Central andWest African
samples (as in Corbett-Detig and Nielsen 2017), and for EAwe
used the EF population. All cosmopolitan pulses were modeled
using FR as the cosmopolitan reference population.

Application to admixed samples

We used our model to assay the admixture histories of
Rwandan, South African, and Ethiopian samples. We fit both a
single-pulse model and double-pulse model to genotype data
from each population, running 100 bootstrap replicates using
a block size of 5000 SNPs.

- single pulse.
./ancestry_hmm -i RG.auto.panel -s RG.ploidy.txt -a 2 0.1

0.9 -p 1 100000 0.9 -p 0 -100 0.1 -g -e 1e-4 -b 100 5000.
./ancestry_hmm -i SD.auto.panel -s SD.ploidy.txt -a 2 0.17

0.83 -p 1 100000 0.83 -p 0 -100 0.17 -g -e 1e-4 -b
100 5000.

./ancestry_hmm -i EA.auto.panel -s EA.ploidy.fixed.txt -a
2 0.34 0.66 -p 1 100000 0.66 -p 0 -100 0.34 -g -e 1e-4
-b 100 5000.

- double pulse.
./ancestry_hmm -i RG.auto.panel -s RG.ploidy.txt -a 2 0.1

0.9 -p 1 100000 0.9 -p 0 -100 -0.05 -p 0 -100 -0.05 -e
1e-4 -g -b 100 5000.

./ancestry_hmm -i SD.auto.panel -s SD.ploidy.txt -a 2 0.17
0.83 -p 1 100000 0.83 -p 0 -100 -0.085 -p 0 -100 -0.085
-e 1e-4 -g -b 100 5000.

./ancestry_hmm -i EA.auto.panel -s EA.ploidy.txt -a 2 0.34
0.66 -p 1 100000 0.66 -p 0 -100 -0.17 -p 0 -100 -0.17 -e
1e-4 -g -b 100 5000.

Application to three population mixture from
Gambella, Ethiopia

We used our model to assay the admixture histories of Gam-
bella, Ethiopia. We fit a double pulse model to genotype data
fromGambella, running 1000 bootstrap replicates each using
a block size of 5000 SNPs. Moreover, since the native ancestry
type forGambella isunknown,wemodeledWestAfrican(AF),
Ethiopian (EA), and French (FR) as the ancestral population.

- EA native ancestry.
./ancestry_hmm -i three_pop.auto.EA.panel -s three_pop.

auto.EA.ploidy -a 3 0.4 0.31 0.29 -p 0 -1000 0.4 -p
1 100000 0.31 -p 2 -1000 0.29 -g -b 1000 5000.

Data availability

We implemented the following model into our software
package called Ancestry HMM (www.github.com/russcd/
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Ancestry_HMM). Below, wherever possible, we give the
script name and line number responsible for a computation,
denoted as header : line number: All code is in the src= direc-
torywithin the Ancestry HMM repository. All line numbers and
results reported here are based on version 0.94. Supple-
mental material available at Figshare: https://doi.org/
10.25386/genetics.7070108.

Model

Overview

In our previous work, we developed an HMM approach to
simultaneously estimate local ancestry and admixture times
using next generation sequencing data in samples of arbi-
trary sampleploidy.Nophasing is necessary, and, unlikemost
LAI methods, our models read pileups, rather than geno-
types, making this approach appropriate for low-coverage
sequencing data (Skotte et al. 2013). Additionally, although
not addressed in this work, our method accommodates sam-
ples of arbitrary ploidy, making it ideal for poolseq applica-
tions or for populations with unusual ploidy, e.g.,
tetraploids. Our previous work assumed a single exponen-
tial tract length distribution, and is therefore limited to ac-
commodating only a single admixture event between two
populations (Corbett-Detig and Nielsen 2017). Here, we
seek to extend this framework to accommodate additional
admixture pulses either from distinct ancestry types or mul-
tiple pulses from the same type. Wherever possible, we have
kept our notation identical to our previous work to facilitate
comparisons between the models. Please refer to Table S1
for descriptions of the statistics we used to describe admix-
ture model and LAI accuracy.

State space

Ourmodel incorporates the ancestry of sampleswith arbitrary
ploidy of n chromosomes and with k distinct ancestry types
resulting from k21 admixture pulses. Therefore the state
space S, is defined as the set of all possible k-tuples of non-
negative integers, H ¼ ðl1; . . . ; lkÞ; such that

Pk
i¼1li ¼ n;

where lj is the number of chromosomes in the sample from
admixture pulse j.

Emission probabilities

We model the probability of read pileup data (or alterna-
tively genotypes) of each sample as a function of the allele
counts in each ancestral population and assume a uniform
prior on the allele frequencies in each source population.
Note thatwhere the same ancestral population contributes
multiple pulses, the emission probabilities for each site at
these states are identical and computed based on the sum
of the number of chromosomes of each ancestry type. To
accommodate up to k distinct ancestry types, we use mul-
tinomial read sampling probabilities. Specifically, if the
representation in the read data are exactly equal (in
expectation) for each chromosome, the probability of

sampling a given read from chromosomes of ancestry
pulse k is lk=n: Therefore, the probability of any given
vector of read counts, R ¼ ðr1; . . . ; rkÞ; sampled from a site
with depth r and across the chromosomes in a given hid-
den state H 2 S; assuming no mapping or sequencing
biases is ðread emissions:h : 31Þ

R
��H; n; r � Mult

 
r;p ¼

�
l1
n
; . . . ;

lk
n

�!
(1)

Conditional on the read count vector, R, the number of reads
carrying the A allele (assuming an A/a di-allelic locus) is in-
dependent among ancestry pulses.

For each reference population, the allele count is bino-
mially distributed given the (unknown) true allele frequen-
cies, fj; j ¼ 1 . . . k: Let Cj represent the total allele count
for reference population j and let CjA represent the total
number of A alleles for reference population j. Then
ðread emissions:h : 51Þ;

CjA
��Cj; fj � Bin

�
Cj; fj

�
(2)

While we assume genotypic data for the reference popula-
tions, we assume short-read pileup data for the admixed
population. The (unobserved) allele counts in the admixed
chromosomes, stratified by admixture pulse origin,
CM1A;CM2A; . . .CMkA and CM1a;CM2a; . . .CMka are also bi-
nomially distributed, i.e., for each ancestry type
ðread emissions:h : 47Þ;

CMjA
��H; fj � Bin

�
lj; fj
�

(3)

Then, assuming a symmetrical and identical error rate among
alleles, e, the probability of obtaining rj reads of allele A from
within the rj reads derived from chromosomes of type j is
ðread emissions:h : 47Þ;

rjA
��H; rj;CMjA; e � Bin

 
rj; ð12 eÞCMjA

lj
þ e

�
12

CMjA

lj

�!

(4)

By integrating across all possible allele frequencies in the
ancestral population assuming a uniform ð0; 1Þ prior, we ob-
tain the probability of a given number of reads of allele A, rjA

Pr
�
rjA
��rj;H; e� ¼Xlk

k¼0

Pr
�
rjA
��H; rj;CMjA ¼ k; e

� Z 1

0
Pr
�
CMjA

¼ k
��H; fj�dfj

(5)

We then find all possible ways of arranging rA reads of allele
A across the read vector R, RA ¼ fðr1A; . . . ; rkAÞg Here, for
each ancestry type, we require that 0# rjA # rj andPk

j¼1rjA ¼ rA: The probability of a given configuration is
ðdistribute alleles:h : 31Þ;
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PrðRA ¼ R*A
��RÞ ¼  

Qk
i¼j

�
r*j
r*jA

�
P

RA2VR

Qk
i¼j

�
rj
rjA

� (6)

where VR is the set of all configurations of RA compatible with
R. For each configuration of reads, R and RA; these above prob-
abilities for each ancestral population combine multiplicatively
across all ancestral populations, and we are then able to obtain
the emissions probabilities for the hidden state, H ¼ i; as

PrðX;C1A; . . . ;CkAjH; e; n;C1; . . . ;CkÞ

¼
 Yk

j¼1

Pr
�
CjAjCj

�! X
fR;RAg2Vx

PrðRAjRÞPrðRjH; n; rÞ

3
Yk
j¼1

Pr
�
rjAjrj; n;H; e

�
(7)

where X is all the read data for the admixed population for
the site and Vx indicates the set of all values of fRA;Rg com-
patible with X.

Transition probabilities

Transition probabilitiesmust also be significantly expanded to
accommodate the more complicated ancestry models inves-
tigated in this work.

Modeling multiple pulses into a single
recipient population

First, we consider a scenario where two ancestry pulses enter
the same admixed populations at two distinct times (Figure
1c). Here, we will refer to the time of each ancestry pulse as
tk, where t0 ¼ 0 and refers to the present and t1; for example,
refers to the most recent admixture pulse in backward time.
During each pulse, a proportion of the resident population,
mk; is replaced. In this model, there are two distinct epochs
during which a recombination event may occur along a chro-
mosome. The last epoch, in backward time, occurs during the
time interval between t1 and t2: During this time, there are
two ancestry types present, and the transition rate between
them is identical to that in our previous work (Corbett-Detig
and Nielsen 2017). Specifically, the transition rate between
the resident ancestry type A3 and ancestry type A2 is

2N
�
12 e

t12t2
2N

�
m2 (8)

in units of Morgans per segment (Liang and Nielsen 2014). A
nearly identical relationship holds for the transition rate from
ancestry type A2 to A3;

2N
�
12 e

t12t2
2N

�
ð12m2Þ (9)

However, after the second ancestry pulse in forward time,
additional transitions between ancestry types A3 and A2 will

occur. During this interval, the transition rate from ancestry
type A3 to ancestry type A2 is

2N
�
12 e

2t1
2N

�
e
t12t2
2N
�
12m1

�
m2 (10)

This transition rate reflects the chance of a recombination
event occurring between t1 and the time of sampling, with no
back coalescence to the previous marginal genealogy in ei-
ther time epoch. Finally, 12m1 is the probability that this
recombination event does not choose a lineage that entered
the population during the second ancestry pulse in forward
time, andm2 is the probability of recombining with a lineage
from the first ancestry pulse in forward time. Hence, the total
rate of transition between ancestry type A3 and ancestry type
A2 across both epochs, is

l32 ¼ 2N
�
12 e

t12t2
2N

�
m2 þ 2N

�
12 e

2t1
2N

�
e
t12t2
2N ð12m1Þm2

(11)

Again, a similar rate holds for transitions between ancestry
types A2 and A3: Transition rates associated with the second
ancestry pulse are simpler, and closely resemble those for a
single pulse model. Specifically, the rate of transition from
ancestry type A3 to ancestry type A1 is

l31 ¼ 2N
�
12 e

2t1
2N

�
m1 (12)

Here, we include the probability that a recombination event
occurs within the second epoch and that the lineage selects
ancestry type A1:Note that if the lineage selects ancestry type
A1; we need not consider the probability of back coalescence
in the time interval between t1 and t2 as it must exit the
admixed population during the first ancestry pulse. Similarly,
the transition rate from ancestry type A1 to ancestry type A3 is

l13 ¼ 2N
�
12 e

2t1
2N

�
ð12m1Þð12m2Þ (13)

where this equation reflects the probability that a recom-
bination event occurs during the second epoch and then the
lineage selects ancestry type A3:Note that no consideration
is given to back coalescence to the previous marginal ge-
nealogy during the epoch between t2 and t1 because there
is no ancestry type A1 present in the population during this
time. Here again, similar rates hold for transitions from
ancestry type A1 to ancestry type A2, and from ancestry
type A2 to ancestry type A1 following similar logic pre-
sented above.

Transition rates canbe generalized to include anarbitrarily
large number of distinct ancestry pulses. Briefly, transitions
between ancestry types may occur during any epoch in which
they are both present within the admixed population. For
example, for the first pulse in forward time, transitions be-
tween ancestry type Ak and Ak21 may occur anytime between
tk21 and the present. Therefore, all epochs will be necessarily
included the transition calculations between ancestry type Ak
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and Ak21: More generally, the transition rate between ances-
try pulses, i and j, where 1# i, j# k is,

lij ¼ 2Nmj

 Yj21

l¼i

12ml

! 
12 e

ti212ti
2N þ

Xi21

q¼1

��
12 e

tq212tq
2N

�

3
Yi

p¼qþ1

e
tp212tp

2N
�
12mp21

��!

(14)

Conversely, if 1# j, i# k; the transition rate between ances-
try of pulse i to pulse j is very similar, i.e., transitions may
occur during the same epochs (tj through the present).
Therefore,

lij ¼ 2Nmj

 
12 e

tj212tj
2N þ

Xj21

q¼1

��
12 e

tq212tq
2N
�

3
Yj

p¼qþ1

e
tp212tp

2N
�
12mpþ1

��!
(15)

Note that it is not necessary for each ancestry pulse to be
derived from distinct ancestral populations. Indeed, we con-
ceived of this approach as a means of fitting multiple pulse
ancestry models. Therefore any number of pulses may be
contributed by as few as two ancestral populations. However,
in order to model full transition rates, it is necessary to
estimate the proportion contributed by each pulse even when
they are from the same ancestry type, potentially making
multiple pulse ancestry models more challenging to fit than
models where each pulse is contributed by a separate sub-
population. More broadly, while this model is quite generaliz-
able, there are limits to what is practical to infer using real
datasets (see below).

Transition rates per basepair

Equation 14 and Equation 15 model transitions in Morgans
per segment between ancestry states. We must therefore
convert these expressions into a transition rate per basepair.
To do this, we multiply the recombination rate by Morgans/
bp using an estimate of the local recombination rate within
that segment of the genome, rbp: Therefore, the single
chromosome transition matrix, PðlÞ ¼ PijðlÞ; i; j 2 S; for a
two pulse population model for two markers at distance
l bp from one another would be as follows ðcreate
transition rates:h  69Þ:

PðlÞ ¼
2
4 12ðl12 þ l13Þrbp l12rbp l13rbp

l21rbp 12ðl21 þ l23Þrbp l23rbp
l31rbp l32rbp 12ðl31 þ l32Þrbp

3
5l

(16)

Modeling sample ploidy

The above model describes the ancestry transitions along a
single chromosome.However,many datasets contain samples

that are diploid or pooled rather than haploid, or equivalently
completely inbred. For simplicity, we model each sample of
ploidy n as the union of n independent admixed chromo-
somes. To approximate the transition probability from state
i to state j in a sample of n chromosomes, we assume the
ancestry proportion, m, contributed by ancestry type A are
known. Let the current hidden state ancestry vector be
s ¼ fs1; s2; . . . ; skgwhere k is themaximal number of ancestry
types and si indicates the number of chromosomes with
ancestry component i. Then t ¼Pk

i¼1si is the total number
of different chromosomes in the pool. Furthermore, let
PijðdÞ be the d-step transition probability from ancestry i
to j of the previously defined 1-chromosome process.
Define qij as qij ¼ siPijðdÞ: Also, let a ¼ fa1; a2; . . . ; akg;
t ¼Pk

i¼1ai; be the ancestry vector d sites downstream
from the location of the locus with ancestry vector s.
Then, we will approximate the transition probability
from, s to a, as

pðajsÞ ¼
X
z2Z

Yk
i¼1

�
si

zi1; zi2; . . . ; zik

�Y
j
qzijij

where z ¼ fzijg is an k3 k matrix of non-negative integers,
and Z is the set of all such matrices for whichPk

i¼1zij ¼ aj"aj 2 a and
Pk

i¼1zji ¼ si"si 2 s: The sum over
all z 2 Z can be large, and increases exponentially in k.

The true ancestral recombination graph is potentially
more complex than our simple approximation which as-
sumes all ancestry transitions to be independent. There-
fore, caution is warranted when using our model on
samples with higher ploidy (Corbett-Detig and Nielsen
2017) ðtransition information:h : 21Þ:
Model optimization

Because the search space for admixture models is potentially
quite complex, we have implemented optimization using the
Nelder-Mead direct search simplex algorithm (Nelder and
Mead 1965) to optimize the HMM using the forward-equa-
tion to compute model likelihoods. As with all direct search
algorithms, there is no guarantee that the optimum discov-
ered is a globally optimal solution. We therefore include ran-
dom restarts to insure that the globally optimal solution can
be recovered consistently.

Assumptions

Perhaps the central assumption of this approach is that ad-
mixture occurs in discrete, distinct “pulses.” Whereas this is
violated in a wide array of true admixture events with either
ongoing or periodic admixture (Pool and Nielsen 2009;
Gravel 2012), the pulse model is tractable for estimating
admixture histories (Gravel 2012; Loh et al. 2013; Corbett-
Detig and Nielsen 2017). We have previously shown that LAI
using our method is robust to a wide array of perturbations
including continuous migration and natural selection
(Corbett-Detig and Nielsen 2017). Nonetheless, all results,
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particularly those that hinge heavily on the precise timing of
admixture events, should be interpreted cautiously. See also
our discussion below.

Validation

Confirmation of the ancestry tract
length approximation

We first confirmed that our sequential Markov coalescent
(SMC’) approximation for the ancestry tract length distribu-
tion is correct. Specifically, we simulated tract length distri-
butions from the forward-in-time simulation program,
SELAM (Corbett-Detig and Jones 2016), and compared those
with the expected tract length distribution under our model.
In comparing the two, we found that the model provides an
excellent approximation for the ancestry tract length distri-
bution (Figure 2). This therefore indicates that our SMC’ tract
length approximation is likely to be sufficient for our pur-
poses. Moreover, we also confirmed that this framework
can also accurately accommodate models involving more an-
cestral populations (Figure S1 and Table S2).

Simulating ancestral populations

Weused the approach of Corbett-Detig and Nielsen (2017) to
validate our HMM software implementation and to test the
performance of this expanded model. Briefly, we simulated
ancestral genotype data using the coalescent simulation
framework MACS (Chen et al. 2009), we then simulated an-
cestry tract length distributions in forward-time using our
software package SELAM (Corbett-Detig and Jones 2016).
Genotype data for admixed individuals was then drawn from
the ancestral data simulated using MACS where genotypes
were drawn from each population and assigned to each tract
based on that tracts’ ancestry type. To explore a wide range of
genetic divergences among ancestral populations, we simu-
lated genotype data for ancestral populations at varying lev-
els of genetic divergence from one another. Specifically, we
considered populations that are 0.05, 0.1, 0.25, 0.5, and 1 Ne

generations divergent from one another.

LD pruning

LD among sitesmay inflate transition rates between ancestry
states. In order tomitigate this, wefirst pruned sites in strong
LD in each reference panel by computing LD among all pairs
of markers within 0.1 cM of each other. We then discarded
one site from each pair with increasingly stringent pruning
until we found that admixture time estimates were approx-
imately unbiased in two pulse admixture models. We note
that the LD pruning necessary for two pulse models appears
to be sufficient for fitting more complex models of admix-
ture (see below). This suggests that simple, single-pulse,
admixture simulations could be used successfully to deter-
mine the necessary levels of LD pruning. Also, we found
that substantially more stringent LD pruning is necessary
to produce unbiased admixture time estimates for ancestral

populations that are minimally divergent from one another
(Figure S2).

Three ancestral populations

We next sought to evaluate the accuracy of this method when
two ancestry pulses are contributed from distinct ancestral
populations. For all levels of population divergence consid-
ered, we find that our method recovers the correct times of
admixture events with reasonably high accuracy for recent
admixture times (Figure 3). Notably, the error in time esti-
mates decrease substantially with increasingly divergent an-
cestral populations, indicating that this method will produce
the most accurate results when ancestral populations are
highly genetically divergent.

Whereas ourmethod accurately estimates admixture times
when admixture events occur at intermediate times prior to
sampling, we find that the accuracy suffers somewhat when
estimating the timings of twomore ancient admixture events.
Indeed, for modestly divergent ancestral populations, e.g.,
0.1Ne generations divergent, we find that our approach con-
sistently underestimates the times since admixture events,
particularly for the more ancient ancestry pulse (Figure 3).
This is true despite a nearly linear relationship for estimated
admixture times and actual admixture times in a single-pulse
two-ancestral-population model (Figure S2), indicating that
there is a significant cost for accuracy of model estimation
when estimating additional ancestry pulse parameters. How-
ever, for more divergent ancestral populations, it is still fea-
sible to obtain accurate admixture time estimates (Figure 3).
We note that our good performance in estimating old admix-
ture times may be a function of more informative sites and
less LD present in D. melanogaster compared to humans, for
example. Additionally, because there is still a monotonic re-
lationship between the time estimates and true admixture
times, it might be feasible to correct for this bias and obtain
accurate admixture time estimates even when ancestral pop-
ulations are not particularly divergent.

Two-pulse admixture model

It is significantly more challenging to distinguish between
models with a single ancestry pulse and models with two
distinct ancestry pulses from the same ancestral population.
As we described above, one of the key difficulties is that, in
addition to estimating admixture times, our model must also
estimate the proportion of the total ancestry contributed by
each pulse. Furthermore, it is essential that this approach
includes a mechanism for distinguishing between single- and
double-pulse models. We therefore began with a single-pulse
admixture simulation and fit both single- and two-pulse
admixture models to these data.

We find that traditional likelihood ratio tests (LRT) uni-
versally favor two-pulse vs. single-pulse models even when
data are simulated under a single-pulse model for all scenar-
ios we considered (Figure S3). Additionally, we note that
two-pulse models may become degenerate, either because
a pulse’s ancestry proportion may be nearly zero, or because
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two pulses may occur at virtually identical times. We there-
fore caution that these factors could make traditional LRTs
challenging to interpret. We therefore suggest that, when us-
ing this method to analyze admixed populations, it will usually
be preferable to choose the simplest admixture model that is
consistent with the data. More complex models are usually
favorable by standard statistical comparisons, but may overfit
the data. This consideration is reminiscent of concerns for
the STRUCTURE model (Pritchard et al. 2000; Evanno et al.
2005). In general, this means the model that contains the few-
est distinct ancestry pulses should be selected.

Spurious admixture models can be identified by interro-
gating the timing and proportion of ancestry contributed by
each admixture pulse. First, many of the resulting two-pulse
admixture models contain ancestry pulses with similar times
(Figure 4 and Tables S3–S5), suggesting that these could be
recognized as representing a single admixture event. Second,
of the models containing two pulses, many contain one pulse
near the correct admixture time and another distant pulse
that introduced a very small proportion, i.e., #1% of the
total ancestry in the sampled admixed population (Figure 4
and Tables S3–S5). Often the pulse introducing a small

Figure 2 Tract length distributions obtained using our tract length model approximation (solid black) and forward-in-time simulation (dashed red). A
model like Figure 1c was considered. An initial pulse of ancestry type A2 entered a resident population of ancestry type A3 and replaced 1=3 of the
resident population. Then, a second ancestry pulse in forward time, from ancestry type A1; replaced 1=4 of the resident population. Each simulation had
a diploid population size of size 10,000, and we aggregated data from 50 sampled individuals across 100 simulations to produce the full tract length
distribution. From top to bottom, respective ancestry tract length distributions correspond to ancestry type A3; A1; and A2: We investigated two
admixture models. The first model has a first and second pulse occurring 200 and 1000 generations, respectively, before the present (left). The second
model has a first and second pulse occurring 20 and 100 generations, respectively, prior to the present (right). Note that axes differ between figure
panels.
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proportion of ancestry in the sampled population occurred in
the distant past, where admixture time is harder to estimate.
Therefore, admixture pulses that (1) occur in the distant past
and contribute relatively small proportions of the total ances-
try or (2) pulse at similar times, may indicate a spurious
admixture model and should be disregarded in favor of sim-
pler admixture scenarios.

When we simulated admixed populations whose histories
contained two distinct ancestry pulses, we found two-pulse

models could sometimes be fit accurately. Specifically, when
the two ancestry pulses occurred at fairly different times (e.g.,
20 and 100, and 200 and 1000 generations), our approach
identified models that correspond closely to the parameters
under which the admixed population was simulated. How-
ever, when the two ancestry pulses occurred at closer time
intervals, we were less frequently able to reliably recover the
correct admixture model (Figure 5 and Table S4). Addition-
ally, we note that the accuracy of two-pulse models depends

Figure 3 Admixture time esti-
mates for two-pulse population
models with three distinct ances-
tral populations. From top to
bottom, panels include the
divergence time between the an-
cestral populations is 0.05, 0.1,
0.25, 0.5, and 1 Ne generations.
True admixture times are indi-
cated by the dashed lines. On
the left, for all admixture models
considered, the second pulse oc-
curred 100 generations before
the present. The first pulse oc-
curred 20 (black), 40 (red),
60 (green), and 80 (blue) gener-
ations prior to sampling. On the
right, the second pulse occurred
1000 generations before the pre-
sent, and the first pulse occurred
at 200 (black), 400 (red),
600 (green) and 800 (blue) gen-
erations prior to sampling. Note
that, due to underestimation of
admixture times, the figure axes
differ between panels for plots of
more ancient admixture events.
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on the genetic distance between ancestral populations (Figure
5), where it is generally more straightforward to fit admixture
models for genetically distant ancestral populations.

Collectively, our results suggest that itmightnotbepossible
to distinguish between single-pulse and two-pulse admixture
models when ancestry pulses occurred at similar times. How-
ever, it is feasible to distinguish single pulse models from

admixture models with both relatively ancient and recent
admixture. Therefore, we anticipate that this approach will
be valuable for investigating a range of hypotheses with
dramatically different admixture times. Furthermore, as we
consider here intermediate-sized population samples, i.e.,
50 individuals, it may be feasible to distinguish more fine-
grained admixture models using larger samples sizes.

Figure 4 Two-pulse admixture models fitted using our framework to data generated under a single-pulse admixture model. We considered varying
levels of population divergence. From top to bottom, the ancestral populations are 0.05, 0.1, 0.25, 0.5, and 1 Ne generation divergent from one
another. From left to right, the single admixture pulse occurred 20, 40, 60, and 80 generations prior to sampling and replaced one half of the ancestry.
Point colors correspond to the proportion of ancestry that is attributable to the second pulse, with a gradient running from 0 (red) to the maximum
possible, 0.5 (yellow). Dashed lines reflect the true admixture time. Note that axes differ between figure panels.
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LAI accuracy

We note that while two pulse models do improve the accu-
racy of LAI, the improvement observed tends to be slight
(Tables S3–S5). This suggests that for studies aimed at eval-
uating patterns of LA across the genome, there may be no

need to extensively optimize admixture models to obtain
reasonable estimates of the LA landscape in the admixed
population. Single-pulse models may be sufficient to accu-
rately characterize LA across the genome for many admixed
populations.

Figure 5 Two-pulse admixture models fitted using our framework to data generated under a two-pulse admixture model. We considered varying levels
of population divergence. From top to bottom, the ancestral populations are 0.05, 0.1, 0.25, 0.5, and 1 Ne generation divergent from one another. For
all models, the second admixture pulse occurred 100 generations prior to sampling. From left to right, the first pulse occurred 20, 40, 60, and
80 generations prior to sampling. The second pulse replaced 1=3 of the resident population and the first pulse replaced 1=4 of the resident population.
Therefore, each ancestral population contributed one half of the ancestry at the time of sampling. Point colors correspond to the proportion of total
ancestry at the time of sampling that is attributable to the first pulse with a gradient running from 0 (red) to the maximum, 0.5 (yellow). Dashed lines
reflect the true admixture times for the first and second pulse. Note that axes may differ between subplots.
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Robustness of our approach to smaller sample sizes,
divergent reference populations, and inaccuracies in the
genetic map

Weanticipate our approachwill beused to estimate the timing
of admixture in model and nonmodel systems. It is likely that
the underlying assumptions will be violated in some applica-
tions. To characterize our model’s performance and robust-
ness in light of these challenges, we evaluated our method’s
ability to correctly estimate the timing of admixture under
varying sample sizes, reference population divergences, and
erroneous recombination maps. See File S1 for definitions of
summary statistics used to quantify accuracy of admixture
models and LAI.

Accurate fine-scale recombination maps are necessary for
estimating transition ratesbetweenadjacent ancestry states in
our model. However, we anticipate that our method will be
applied to nonmodel systems where a fine-scale recombina-
tion map might not be available. Therefore, we tested the
resilience of our method against perturbations of the recom-
bination map using populations that are 0.25 Ne generations
divergent (Methods). The normalized root mean squared er-
ror (NRMSE) in estimating the timing of a single pulse ad-
mixture event using our approach is ,12% for all admixture
times 20, 40, 60, and 80 even when the recombinationmap is
substantially distorted (Figure S6 and Tables S6 and S7).
Moreover, our approach is unlikely to give false support for
a two pulse model to truly single pulse data (Figure S7).
When fitting a two-pulse model to two pulse data, our
method consistently overestimates the timing of admixture
events when the true recombination map is distorted relative
to the assumed map. However, for all but the most strongly
distorted recombination maps, our results imply that two
pulse models can be reliably identified, albeit with overesti-
mated admixture times (Figure S8). Therefore, for single-
pulse admixture models, a high-density recombination map
does not appear necessary; however, for accurate two-pulse
admixture models, a high density genetic map may be re-
quired to obtain accurate admixture time estimates. See Ta-
ble S7 for detailed error reports as a result of perturbed rates
of recombination.

Additionally, the source population contributing to the
admixture history of a populationmay not always be available
for genetic sequencing, or may be incorrectly identified. To
test the sensitivityofourapproachwhenarelated,butdistinct,
population from the true admixture source is used as a
reference, we simulated admixture events using reference
populations of varying divergence to the actual source pop-
ulation and estimated the timing of admixture (seeMethods).
We found our approach consistently overestimated the tim-
ing of admixture in both single and double pulse models
(Figures S9 and S10). In general, as reference populations
are more divergent from the true admixture source, our
method increasingly overestimated the timing of admixture
events. Nonetheless, it is feasible to identify a two-pulse
model, despite overestimating the timing of admixture (Figure

S10).Moreover, we fitted a double-pulsemodel to single-pulse
data and found no false support for a double-pulse model
(Figure S11). We advise that, when using our approach, it will
be necessary to carefully identify the closest possible reference
population, as there are limitations of how divergent the ref-
erence can be to the actual source population in order to obtain
accurate estimates of admixture time (Tables S8 and S9).

Lastly, we evaluated our method’s performance under
varying sample sizes of the admixed population. Because
we considered only a single chromosome in all analysis, we
note that our sample sizes considered here, down to 10 indi-
viduals, are very modest relative to most sequencing applica-
tions with respect to total data considered. Regardless, we do
not obtain false support for a two-pulse model when applied
to admixed populations that experienced only a single pulse
(Figure S12). Estimating the timing of admixture becomes
more accurate with large sample sizes. However, a sample
size of just 10 individuals at a single chromosome still has a
NRMSE ,6% for all admixture times we considered (Tables
S10–S12). Therefore, we conclude that our approach is still
useful in cases with limited sampling.

Comparison to ALDER

We compared the accuracy of our approach in estimating the
timing of admixture to that of ALDER (Loh et al.2013). Briefly,
ALDER and its extension, MALDER (implemented in Pickrell
et al. (2014)), is based on modeling the decay of admixture
LD within admixed populations. In all single- and double-
pulse models that we considered (See Methods), our ap-
proach more accurately estimates the timing of admixture
(Tables S13 and S14). Notably, our method significantly out-
performs ALDER in models involving pulses occurring more
distantly in the past (i.e.,.80 generations ago). This discrep-
ancy might be attributable to our method’s ability to model
short tracts of LA, which get disregarded in ALDER by default
(Loh et al. 2013), potentially impacting the ability to identify
ancient admixture events (Figure S13).We note that estimat-
ing ancient admixture pulses is not the intended use of
ALDER, but was included in this analysis to fully compare the
utility of our software in estimating both recent and ancient
admixture pulses. Considering a relatively recent two-pulse
model where t1 ¼ 20 and t2 ¼ 100; MALDER correctly fits a
two-pulse model 6 out of 20 of the simulations, but selects a
single-pulse model for the 14 others (Table S14). Our ap-
proach fit a two-pulse model to the model in all 20 simula-
tions and produced a NRMSE of 0.0307 and 0.0214 for t1 and
t2; respectively, compared to MALDER’s 0.1207 and 0.1856.
We used default parameters for ALDER/MALDER simula-
tions and further parameterization might improve its perfor-
mance (see Methods).

When is this method a good choice?

We recommend using our software over ALDER/MALDER,
especially when estimating ancient admixture pulses. Our
software performs best with reference populations that
are minimally divergent to the source population and an
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accurate fine-scale recombination map. Our results suggest
that this approach is robust to varying levels of data availabil-
ity and to errors in thefine-scale geneticmap.Given that this is
the only approach for LAI and admixture time estimation that
can accommodate nondiploid samples, short-read pileup
data, and relatively ancient admixture pulses, it will likely
be useful in a variety of systems.

Nonetheless, we advise carefully considering, e.g., through
simulation, how this approach will perform with available
data, particularly when ancestral LD is extensive or popula-
tions are only weakly genetically differentiated, such as what
is found in some human admixed human populations. Partic-
ularly for these situations, we suggest to instead apply LAI
software that explicitly models the haplotype structure of
admixed samples (Price et al. 2009; Maples et al. 2013;
Dias-Alves et al. 2018) and use the resulting tract length
distribution to estimate admixture time (Gravel 2012; Ni
et al. 2018). Moreover, if there is concern that the assumed
reference population is divergent from the true reference
population, other methods such as ALDER might be more
robust in estimating the timing of admixture (Loh et al.
2013).

Application

Admixture in D. melanogaster

Biogeographical evidence (Lachaise et al. 1988) and patterns
of genetic variation (Begun and Aquadro 1993; Caracristi
and Schlötterer 2003; Thornton and Andolfatto 2006) sug-
gest that D. melanogaster originated in sub-Saharan Africa,
and went on to colonize much of the rest of the world rela-
tively recently (Duchen et al. 2013). During this expansion,
the population that left sub-Saharan Africa experienced a
dramatic bottleneck that reshaped patterns of genetic diver-
sity across much of the genome (Caracristi and Schlötterer
2003; Ometto et al. 2005; Duchen et al. 2013). The resulting
“cosmopolitan” haplotypes are distinguishable from those of
the ancestral sub-Saharan populations based solely on pat-
terns of genetic variation (Pool et al. 2012), and these two
ancestral populations have since encountered each other and
admixed in numerous geographic locations within sub-
Saharan Africa and worldwide (Caracristi and Schlötterer
2003; Pool et al. 2012).

Thus,D. melanogaster has emerged as an important model
for understanding the genomic and phenotypic consequences
of admixture in natural populations. There are important
premating behavioral isolation barriers between cosmopoli-
tan and African individuals (Ting et al. 2001), as well as sub-
stantial phenotypic consequences that operate postmating
within admixed individuals (Lachance and True 2010; Kao
et al. 2015). Additionally, recent work has investigated the
genomic consequences of admixture both demographically
(Duchen et al. 2013; Bergland et al. 2016) and with the goal
of evaluating the impact of natural selection in shaping ge-
nome-wide patterns of variation (Pool 2015). The genomic
consequences of admixture have only been studied using

relatively simple demographic models [i.e., a single event
(Pool et al. 2012)], leaving open the possibility that more
complex admixture dynamics are common in natural popu-
lations of this species. Accurately characterizing the admix-
ture histories and the patterns of local ancestry across the
genome is essential to further our understanding of the de-
mographic history of this species and build a complete null
model for studying natural selection on ancestry during
admixture.

Evaluating possible applications to D. melanogaster
admixed populations

In agreement with our general conclusions from admixture
simulations, we find that our method is accurate, and single-
pulse admixture models are distinguishable from two-pulse
models for temporally distinct admixture events (i.e., wherein
two pulses occurred at significantly different times, Figure 6
and Figure S5). However, also consistent with our results
above, we find that when admixture pulses occurred at rela-
tively similar times (e.g., t1 = 200 and t2 = 250 generations
prior to sampling), a single ancestry pulse contributes the
vast majority of admixed ancestry, and this scenario is there-
fore ultimatelymost similar to a single-pulse admixturemodel.
These data therefore suggest that it is possible to distinguish
single- from two-pulse admixture models in data consistent
with D. melanogaster ancestral populations when the admix-
ture pulses occurred at dramatically different times.

Perhaps owing to the higher marker density, the greater
accuracy of genotypedmarkers along the genome, and/or the
inbred genomes in our Drosophila samples, we find that our
method is slightly more accurate for population histories con-
sistent with those of D. melanogaster than for the simulated
populations considered above (Tables S3–S5). Additionally,
admixture times can be accurately estimated even when ad-
mixture events occurred in the distant past (e.g., 5000 gener-
ations prior to sampling, Figure 6 and Figure S5).

Application to admixed D. melanogaster samples

To demonstrate the performance of our method on real
datasets, we applied our approach to D. melanogaster varia-
tion data from sub-Saharan African populations (Figure 7).
We studied populations from Rwanda (RG), South Africa
(SD), and Gambella, Ethiopia (EA) and estimated the time
of cosmopolitan admixture using both double and single
pulse models.

In two-pulse models, cosmopolitan ancestry pulsed twice
(Figure 1b), and resulted in the most recent pulse contribut-
ing�99 and 97.5% (for RG and SD, respectively) of the total
cosmopolitan ancestry present in the population at the time
of sampling. The second, more ancient, pulse tends toward
the maximum time allowed in our inference method, 10,000
generations, and contributes 0.01 and 2.5% of the total cos-
mopolitan ancestry present in the population at the time of
sampling RG and SD (Figure 7). As described above, a distant
admixture pulse contributing small amounts of ancestry
likely indicates a spurious admixture model. Though it is
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possible that ancient cosmopolitan admixture contributed a
small amount to the ancestry of the SD and RG populations,
the simplest model, a single-pulse model with cosmopolitan
ancestry pulsing into African ancestry, provides a reasonable
description of the demographic history of RG and SD. The

estimated admixture times, 140 and 437 generations in a
single pulse model, suggest that the observed cosmopolitan
ancestry has entered these populations exceptionally re-
cently despite earlier contact and extensive commerce among
human groups.

Figure 6 Admixture model fitted for data consistent with admixed Drosophila populations. Two-pulse admixture models for scenarios that are truly
single-pulse (left), two-pulse with a first admixture pulse 20 generations prior to sample (middle), and two-pulse models with a first admixture pulse
200 generations prior to sampling (right). From top to bottom, the second admixture pulse occurred 250, 500, 1000, 2500, and 5000 generations prior
to sampling. The point colors indicate the proportion of ancestry in the sampled population that entered during the first admixture pulse in backward
time with a gradient running from 0 (red) to the maximum, 0.5 (yellow). Dashed lines indicate the correct timing of simulated ancestry pulses. In two-
pulse models, the first pulse contained 10% of the final ancestry and the second contributed 14% of ancestry to the sampled population. In single-pulse
models, all of the non-native ancestry is contributed by one pulse. These values were selected to be consistent with those from admixed sub-Saharan
populations of this species (Pool et al. 2012). Note that axes may differ between subplots.

Timing Multiple Admixture Pulses 1103



To test how our method performs when ancestral popula-
tions are omitted, we applied a two-pulse model to genotype
data (EA) from Gambella, Ethiopia, which is believed to have
West African, Ethiopian, and cosmopolitan ancestry (Lack
et al. 2015). Instead of modeling all three ancestral popula-
tions, we omitted West African as an ancestral population to
mimic a scenario where the ancestral populations of an
admixed population have not all been identified. The results
of the two ancestral state model estimated an ancient admix-
ture pulse composing 6.5% of the total cosmopolitan ancestry
present in the population at the time of sampling (Figure 7).
Importantly, we note that 6.5% is substantially more than we
found in any of our simulated single-pulse datasets. A second
pulse �200 generations ago contributed 28% of cosmopoli-
tan ancestry. Since this two-pulse model did not include an-
cestry from a West African population, it is likely that our
method fit a portion of the allele frequency differentiated
between the ancestral populations into the ancient pulse of
cosmopolitan ancestry. Thus, a large proportion of ancestry con-
tributed by an ancient admixture pulse might indicate the need
to identify additional ancestral populations. A two-pulse model

including three ancestral populations is therefore more appro-
priate for studying the admixture history of EA.

Application to three-population mixture in Gambella,
Ethiopia (EA)

Our results above emphasize the importance of identifying
and incorporating variation data from all ancestral popula-
tions. Here, we use a two-pulse, three-ancestral-population,
admixture model to estimate the order and timing of admix-
ture events into EA (Figure 1c and Figure 8).

The native ancestry of D. melanogaster from EA is un-
known. Previous studies have suggested both cosmopolitan
and sub-Saharan ancestry contribute to the genetic variation
in EA (Figure 1c) (Lack et al. 2015). To determine the most
likely native ancestry of EA, we applied three permutations of
a two-pulse model to population data from Gambella, Ethio-
pia. We used unadmixed populations from Ethiopia (EF),
cosmopolitan (FR), and West African (AF) to represent an-
cestral populations of EA, and used our program to estimate
the timing of admixture in each admixture model. Our three
models were: EF and AF pulsing into resident FR ancestry, AF

Figure 7 Single- and double-pulse models applied to real genotype data generated from sub-Saharan African populations of D. melanogaster. In the
plots shown, cosmopolitan ancestry pulsed into native African ancestry once (top row) or twice (bottom row). The panels from left to right are populations
RG, SD, and EA. Single- and double-pulse models were bootstrapped 100 times. Each point in the top row corresponds to a bootstrap estimate of the
timing of admixture. The bottom row shows bootstrap estimates for the timing of the second admixture pulse in backward time. The point colors indicate
the proportion of ancestry in the sampled population that entered during the second (in backward time) admixture pulse, with a gradient running from
0 (red) to the maximum, 0.076 (yellow). Black dots indicate the bootstrapped time optima. Note that axes may differ between subplots.
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and FR pulsing into EF ancestry, and EF and FR pulsing into
AF ancestry.

When FR is supplied as the resident population in the two
pulse model, EF and AF both enter the population 1140 gen-
erations ago. This is implausible for a variety of reasons. First,
even without considering this result, it is unlikely that cos-
mopolitan ancestry is the native ancestry type in Gambella,
Ethiopia. Second, it is exceptionally unlikely that two distinct
ancestral populations enter the admixed population at pre-
cisely the same time. Finally, the likelihood of the FR native

ancestry model is less favored relative to an EF or AF native
model by 11,000 log likelihood units. We therefore con-
sider a model with native African ancestry, EF or AF, to most
likely describe the admixture history of Gambella, Ethiopia
D. melanogaster.

WhenEFandAFweremodeledasnativeancestry, resulting
admixture histories were nearly identical, suggesting either
EF or AF could be native to Gambella since these are equiv-
alent models. Using a two-pulse, three-ancestral-population
model,weestimated the timingofEFandFRadmixturepulses

Figure 8 Most likely admixture model
fitted to real data generated from Gam-
bella, Ethiopia (EA). Schematic of dou-
ble-pulse admixture model with three
ancestral populations and ancestry types
is shown (top). Note the schematic is not
drawn to scale. A total of 1000 boot-
straps were run of FR and EA pulsing
into AF native ancestry. Real bootstrap
data are shown (bottom), where each
point is a bootstrap estimate of FR and
EA admixture pulses and the black point
represents the optimal admixture model
from the full data set. The optima and
95% confidence intervals around the es-
timated timing of admixture are reported
as part of the schematic.
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in AF native ancestry (Figure 1c). The second pulse in back-
ward time is estimated to have occurred �4962, 95% CI
[4349, 5619], generations ago, and suggests that EA
admixed with genetically distinct sub-Saharan African popu-
lations in the relatively distant past (Figure 8). The most re-
cent pulse introduced FR ancestry 372, 95% CI [342, 418]
generations ago, suggesting EA recently admixed with cos-
mopolitan populations, which is strikingly consistent with
our estimates from the other admixed populations in sub
Saharan Africa (Figure 3 and Figure 8). Additionally, the rel-
atively recent admixture betweenWest African and Ethiopian
D. melanogaster, suggests that sub-Saharan populations of
this species were isolated until very recently (i.e., �338
years ago).

We note that our estimate of admixture time is congruent
withanestimateofdivergencebetweenEthiopianandCentral
African populations. Kern and Hey (2017) estimated Ethio-
pian and West African D. melanogaster diverged �3628
years ago (or�50,000 generations). Our estimates of admix-
ture time occur sufficiently far after this estimated Ethiopian
and African divergence time and provide confidence that our
three-population admixture model of Gambella (EA) D. mel-
anogaster is consistent with previous investigations of demo-
graphic patterns of D. melanogaster from sub-Saharan Africa.
These data therefore indicate that our approach can be useful
in estimating the timing of multiple admixture events in the
history of a population using real genotype data.

Conclusion

Admixture histories can be complex with numerous distinct
ancestral populations contributing genetic material to a re-
cipient population at multiple times in the past. In this work,
we developed coalescent theory as well as a method to
estimate the timing of multiple admixture events in an
admixed population. We applied our model to forward-time
simulated and real sequence data. The results of our simula-
tions suggest that our model can discern between ancestry
pulses occurring far apart in time from each other. Moreover,
our method excels when the populations contributing ances-
try are genetically diverse from each other.

Our approach, when applied to real admixed D. mela-
nogaster populations, is consistent with previous results on
the African origin and admixture of the D. melanogaster spe-
cies. We find that cosmopolitan ancestry has entered very
recently, and is best accommodated by our framework using
a single-pulse model. Additionally, we demonstrate thatmore
complex admixture patterns have shaped the ancestry of
Gambella, Ethiopia. We indicate that two ancestry pulses
from distinct ancestry types are necessary to explain patterns
of genetic variation within this population.

This method improves the estimates of multiple pulse
admixture models while accommodating the possibility of
more thanone sourcepopulation.Althoughnot a focusof this
study, our method is designed to accommodate read pile-up
data, samples of arbitrary ploidy, and sampleswith unknown
admixture history. Taken all together, we anticipate that our

approachwill facilitate continued exploration of admixture’s
contributions to fundamental biological processes such as
adaptation, ecological divergence, and speciation.
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