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Abstract

Motivation: Copy number alterations (CNAs) are a significant driver in cancer growth and development, but remain
poorly characterized on the single cell level. Although genome evolution in cancer cells is Markovian through evolu-
tionary time, CNAs are not Markovian along the genome. However, existing methods call copy number profiles with
Hidden Markov Models or change point detection algorithms based on changes in observed read depth, corrected
by genome content and do not account for the stochastic evolutionary process.

Results: We present a theoretical framework to use tumor evolutionary history to accurately call CNAs in a prin-
cipled manner. To model the tumor evolutionary process and account for technical noise from low coverage single-
cell whole genome sequencing data, we developed SCONCE, a method based on a Hidden Markov Model to analyze
read depth data from tumor cells using matched normal cells as negative controls. Using a combination of public
data sets and simulations, we show SCONCE accurately decodes copy number profiles, and provides a useful tool
for understanding tumor evolution.

Availabilityand implementation: SCONCE is implemented in Cþþ11 and is freely available from https://github.com/
NielsenBerkeleyLab/sconce.

Contact: sandra_hui@berkeley.edu or rasmus_nielsen@berkeley.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In cancerous cells, somatic driver and passenger single nucleotide
polymorphisms (SNPs) and copy number alterations (CNAs) accu-
mulate over time. CNAs are extremely common across cancer types
(Beroukhim et al., 2010; Gerstung et al., 2020).

Many large-scale cancer studies are done with bulk samples, and
many methods and evaluation techniques (Salcedo et al., 2020;
Smolander et al., 2021) have been developed to identify CNAs in
bulk sequencing, especially for low coverage data (Poell et al., 2019)
and tumor heterogeneity deconvolution (Xiao et al., 2020).
However, bulk sequencing averages mutations across many cells
and loses the granularity and detail single-cell sequencing (SCS) can
provide. Single-cell sequencing facilitates analyses treating each cell
as an individual in a population. However, the SCS process is tech-
nically challenging and produces noisy low coverage data, due to
challenges such as cell dissociation, small amounts of starting DNA
and non-uniform whole genome amplification (Kashima et al.,
2020). Although the rapidly increasing availability of single-cell

RNA sequencing (scRNA-seq) of tumors can yield insights into
tumor subpopulations (Patel et al., 2014) and relevant biological
pathways and processes (Suvà and Tirosh, 2019; Tirosh and Suvà,
2019), using scRNA-seq for calling CNAs is limited to areas of the
genome that are expressed at the time of sequencing and does not
directly measure genomic copy number. However, single-cell whole
genome DNA sequencing data promises to circumvent these prob-
lems, despite the inherent noisiness of the data.

The main components of CNA calling are detecting breakpoints
between contiguous regions of the genome with the same copy num-
ber and determining the absolute copy number of each region.
Previous approaches to calling CNAs using single cells have been
based on Hidden Markov Models (HMMs) and change point detec-
tion (Mallory et al., 2020). For example, HMMcopy use a Hidden
Markov Model to segment tumor genomes, normalized by matched
normal cells. Although HMMcopy was originally designed for array
comparative genomic hybridization data (Lai et al., 2019; Shah
et al., 2006), it has been widely used for single-cell sequencing data
(Lai et al., 2019; Malloryet al., 2020).
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Another method, CopyNumber (Nilsen et al., 2012), was also
designed for microarray use. Although CopyNumber detects break-
points, it does not output absolute copy number calls. One strength
of CopyNumber, however, is that it can be run in individual and
multi-sample modes, where breakpoints are forced to be shared
across all samples (Nilsen et al., 2012).

A third program, DNAcopy (Olshen et al., 2004; Venkatraman
and Olshen, 2007), was designed for microarray use, and uses circu-
lar binary segmentation to identify breakpoints, but does not output
absolute copy number calls (Olshen et al., 2004; Venkatraman and
Olshen, 2007). Although DNAcopy was not originally designed for
single-cell sequencing data, it has been applied to such data sets
(Baslan et al., 2012; Navin et al., 2011).

A fourth program, AneuFinder (Bakker et al., 2016; Taudt,
2018), which was designed for calling CNAs in whole genome SCS
data, uses an HMM (Bakker et al., 2016) or breakpoint detection
analysis (Taudt, 2018). To determine absolute copy number, regions
are scaled to have integer copy numbers, or so the mean copy num-
ber matches a known ploidy [determined by a DNA quantification
technique, such as flow cytometry (Gao et al., 2016)].

Finally, SCICoNE (Kuipers et al., 2020) was designed for CNA
calling in whole genome SCS data. It uses a likelihood-based model
to first detect breakpoints shared across cells, and then builds a
CNA-based tree to determine absolute copy number values (Kuipers
et al., 2017, 2020).

All of these methods require dividing the reference genome into
adjacent bins and using bin or cell specific GC and mappability cor-
rections to adjust read counts and mask out ‘bad’ bins that exhibit
extremely high or low coverage due to centromeres, telomeres or
highly repetitive regions. None use stochastic models of tumor evo-
lution to do both breakpoint detection and copy number calling. An
objective of this article is to develop models for CNA calling based
on explicit models of tumor evolution. The rationale is that the use
of such explicit models of evolution might improve inferences simi-
larly to what has been observed in models of molecular evolution
used in phylogenetics (Felsenstein, 1981; Yang, 1993, 1994).

Because tumor cells evolve forward in time from an ancestral
diploid state through mutations that only depend on the current
state of the cell, CNAs are inherently governed by a (possibly time-
inhomogeneous) temporal Markov process. However, the read dis-
tribution observed along the length of the genome (the spatial pro-
cess) is not Markovian. To realize this, consider a mutation within a
segment of DNA with copy number 4 that reduces the copy number
from 4 to 3. When moving from the left to the right along the length
of the genome, the copy number would then go from 4! 3! 4.
There are two transitions (breakpoints) caused by the same single
CNA. In many other situations, the rate of mutation from 3! 4 (as
in the second breakpoint) might be low, however, because the
chromosome previously was in state 4, the rate of transition back
from 3 to 4 is in fact high in our example. The process along the
length of the genome is not Markovian because CNAs may have fi-
nite length and each mutation may induce two breakpoints.

Even though the spatial process is not Markovian, the HMM frame-
work is computationally convenient. An aim of this article is, therefore,
to develop Markovian approximations of the spatial process that can
be used for inference. We present SCONCE (Single Cell cOpy Numbers
in CancEr), a method based on modeling the temporal Markovian evo-
lutionary process and deriving a best approximating spatial HMM
from this process. SCONCE also uses diploid data as a null to model
the technical noise in single-cell sequencing data and can robustly learn
model parameters and detect CNAs. We show on simulated data that
the method more accurately estimates the copy number states of a cell
than previous state-of-the-art methods, and we analyze real data to
show that the observations from simulated data are mirrored by similar
differences among methods in analyses of real data.

2 Theory and methods

2.1 Simulations
To robustly evaluate SCONCE, we use two simulation models, one
based on treating the genome as a continuous line and modeling

CNAs as duplications or deletions of line segments (Line Segment
Model), and one based on dividing the genome into discrete bins
(Binned Model). Of note, the assumptions of these simulation model
are more realistic and differ intentionally from the models imple-
mented in SCONCE described in Section 2.2. We simulate data and
estimate parameters and copy number calls under different models,
to avoid biasing method comparisons toward our method.

2.1.1 Line segment model

In the Line Segment Model, we assume a genome, G, to have a fixed
maximal length, L, and be comprised of c orthologous chromo-
somes. Each chromosome consists of an ordered list of line seg-
ments, which have positions that can be mapped back into ½0;L�.
Amplifications create an extra copy of a chromosome or part of a
chromosome. Note there is no maximum copy number imposed by
this model, and copy number may go to infinity. A deletion in a
chromosome erases part, or the entirety, of one or more line seg-
ments in a single chromosome. Once deleted, a segment cannot
be regained. A worked example is given in Supplementary Material
S1.1.

Rates of amplification and deletion in the Line Segment model:
It is assumed that amplifications and deletions initiate at a constant
rates u and d, respectively, per unit chromosome and per time unit,
with lengths drawn from truncated exponential distributions with
respective rates sa and sd, such that the rate at which a particular
point in the region is affected by an amplification or deletion is u

sa

and d
sd

, respectively.

We assume that amplifications and deletions run from left to
right (but by construction the same distribution is obtained if con-
sidering the process from right to left), and the truncation occurs
when an amplification or deletion extends beyond the end of the
chromosome. To remove edge effects, we additionally assume new
events can initiate at the left start of each chromosome with the

same rates, u
sa

and d
sd

. The total genomic rate at which amplifications

and deletions occur at any point in time is then

c u
sa
þ d

sd

� �
þ jGjðuþ dÞ.

Induced marginal process: The process, as defined here, is a
Markov process with state space on the infinite set of all possible
genomes. It also induces a marginal continuous time Markov pro-
cess at each position in the genome, Wt 2 Z, with transition rates

qij ¼ i u
sa

if j ¼ iþ 1; qij ¼ i d
sd

and j ¼ i� 1 and j � 0, and qij ¼ 0

otherwise, for copy number states i and j. We notice that this is a lin-

ear birth–death process with birth rate u
sa

and death rate d
sd

.

2.1.2 Binned process

We also consider an alternative and simpler process, termed the
binned process, where we assume that the genome can be divided
into n bins. The state space in each bin is S ¼ f0; 1; 2; . . . ; kg, where
k is the maximum copy number.

Amplifications and deletion lengths in the Binned process: We
assume that the length of amplifications and deletions follows a
truncated geometric distribution with parameter p. That is, given
that a certain amplification/deletion occurs in bin i, the probability
that it extends to the adjacent bin i þ 1 is 1� p. If the copy number
in bin i changes by amount s, the copy numbers in bins affected by
the same event change from u to u0 ¼ sþ u if 0 � sþ u � k; u0 ¼
0 if sþ u < 0, or u0 ¼ k if sþ u > k.

Marginal process of initiation: We model the marginal process
of initiation of new CNAs in each bin as a continuous time Markov
chain with rate matrix Q ¼ fqijg. The total rate of CNA initiation
within any of the n bins, at time t, is then Rt ¼

Pn
i¼1

P
j6¼YiðtÞ qYiðtÞj,

where YiðtÞ is the state in bin i at time t. Notice, that because of the
assumption of geometrically distributed lengths of amplifications
and deletions, the marginal process in each bin does not follow Q.
Only the initiation process of new amplifications and deletions fol-
lows Q.

To ensure an approximately constant rate along the length of the
chromosome, amplifications and deletions may also initiate
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immediately to the left of the first bin. Such events occur at a rate of
Rt

np, and the relative probability of change to state j from state Y0ðtÞ is
given by qY0ðtÞj.

2.1.3 Read depth simulation

Both the line segment and binned models simulate observed read
depth for a given number of genomic windows directly from the
simulated genome, G. Read depths are drawn from a user specified
negative binomial distribution.

2.1.4 Simulation datasets

We simulated five datasets under the line segment model and seven
datasets under the binned model, to generate a variety of types and
quantity of copy number events. Each dataset had 100 tumor cells
and 100 diploid cells, where read counts from diploid cells were
averaged together to form the background model. Full simulation
parameter values are given in Supplementary Material S1.2.

2.2 Hidden Markov model
To detect breakpoints and call absolute copy numbers, we define a
Hidden Markov Model along the length of the genome informed by
a tumor cell’s evolutionary history. We define the state space, S, of
the HMM as the integer tumor copy number in a given genomic bin,
from 0 up to a user specified k (suggested k¼10), and the alphabet
as the integer observed tumor read depth in that bin.

2.2.1 Emission probabilities

We model emission probabilities for tumor read counts for each bin
with a negative binomial distribution (interpreted here as an overdis-
persed Poisson). We incorporate the mean diploid read count for
each bin into the emission probabilities, to normalize for technical
noise and sequencing bias. Note that having a matched diploid sam-
ple is necessary to account for sequencing errors. We assume the
tumor read depth in window i for tumor cell A to be represented by
random variable XiA, such that

EðXiAÞ ¼ kiA ¼ qiA �
li

2

� �
� sA þ e (1)

XiA � NegBinomðkiA; r
2
iA ¼ ak2

iA þ bkiA þ cÞ (2)

where qiA is the state in window i for cell A, li is the mean diploid
read depth in window i, e is a constant sequencing error term, sA is a
cell-specific library size scaling factor (see Section 2.5.2), and fa, b,
cg are constants learned from diploid data (see Supplementary
Section S2.2). We use a quadratic relationship between the mean
and variance of read depth in Equation 1, as this approximation
best fit real diploid data (Navin et al., 2011) (see Supplementary
Material S2.1). Therefore, the emission probability for an observed
read depth, xiA, is given by Equation 2.

2.3 Joint evolutionary process of two bins forward in

time
In Section 2.1, we described two principled models of CNA evolu-
tion. However, neither of these models have the property that they
are Markovian along the length of the genome. To construct an
approximating process that is Markovian, we will first construct a
process jointly affecting two bins. From this description of the joint
evolution of two bins, we will then derive the approximating
Markov process used as the transition probabilities in the HMM.

Consider two adjacent bins in the genome on one lineage,
ðU;VÞ 2 fð0; 0Þ; ð0; 1Þ; . . . ; ðk;kÞg, where U is the copy number in
bin i, and V is the copy number in bin iþ1. The copy numbers in
these bins change through continuous time evolutionary history
according to rate parameters fa; b; cg:

a ¼ rate of 61 CNA (3a)

b ¼ rate of any CNA (3b)

c ¼ rate of CNAs affecting both U and V (3c)

These rates are encoded in a transition rate matrix Q ¼
fqðU;VÞ;ðU0 ;V 0 Þg;U;V;U0;V 0 2 S, which gives the instantaneous rate
of observing a change from (U, V) to ðU0;V 0Þ:

qðU;VÞ;ðU0 ;V 0 Þ ¼

cðaþ bÞ if ðU0;V 0Þ ¼ f ðU þ n;V þ nÞ
ðU � n;V � nÞ ; n ¼ 1

cb if ðU0;V 0Þ ¼ f ðU þ n;V þ nÞ
ðU � n;V � nÞ ; n > 1

aþ b if ðU0;V 0Þ ¼ f ðU6n;VÞ
ðU;V6nÞ ; n ¼ 1

b if ðU0;V 0Þ ¼ f ðU6n;VÞ
ðU;V6nÞ ; n > 1

rðU;VÞ if ðU0;V 0Þ ¼ ðU;VÞ
0 otherwise

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(4)

We set rðU;VÞ ¼ �
P
ðu0 ;v0 Þ6¼ðU;VÞ qðU;VÞ;ðu0 ;v0 Þ such that all rows sum

to 0. As only one event can occur in an infinitesimally small time
interval, cases where adjacent bins are simultaneously affected by
different events, such as ðU0;V 0Þ ¼ ðU þ n;V � nÞ; n > 0, have in-
stantaneous rate 0. However, notice that any time interval > 0, can
contain different changes in adjacent bins.

From this rate matrix Q, the time-dependent transition probabil-
ities P are calculated via the matrix exponential as

PðU;VÞ;ðU0 ;V 0 ÞðtÞ ¼ eQt (5)

as the solution to the Kolmogorov equations. This gives the prob-
ability of observing a transition from (U, V) to ðU0;V0Þ in evolution-
ary time t.

2.4 Approximating Markovian process along the

genome
We convert the forward-in-time process for two bins into an
approximating Markov model along the length of the genome with
transition probability matrix Mt ¼ fmi;i0 ;tg; i; i0 2 S, i.e. we identify
the one-step transition probability of moving from state i to i0 along
the genome in a binned process, after a given evolutionary time t.
Under the assumption that the cell has an ancestral diploid state at
time t¼0, we set ðU;VÞ ¼ ð2; 2Þ and ðU0;V0Þ ¼ ði; i0Þ. To ensure all
rows in matrix Mt sum to 1, we normalize over all states W in S,
such that the one-step transition probabilities of the discrete approx-
imating Markov process along the length of the genome are given by

mi;i0;t ¼
Pð2;2Þ;ði;i0 ÞðtÞP

W2S Pð2;2Þ;ði;WÞðtÞ
(6)

Given an evolutionary time t, Equation 6 defines the transition
matrix for the HMM (described in Section 2.2) along the length of
the genome. That is, the HMM transition matrix is fully parameter-
ized by fa; b; c; tg.

The advantage of using a model that approximates a non-
Markovian process using an evolutionary time-informed HMM
over more generic HMMs is that information about the ancestral
diploid state is included in the model specification, allowing, as we
will show in the result section, more accurate inference of copy num-
ber state. While the model is only an approximation, as it ignores
the non-Markovian nature of any realistic model of CNA changes
along the genome, we will evaluate it on simulations from the afore-
mentioned more realistic non-Markovian simulation models.

2.5 Model training
The model training has four steps, followed by the copy number
profile decoding, shown in Figure 1. We first estimate the emission
probability constants in Equation 2, fa, b, cg, from the diploid data.
Second, for each tumor cell, A, we quickly estimate an
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unconstrained transition matrix, initial probability vector, and li-
brary size scaling factor, sA, using a modification of the Baum-
Welch algorithm. Third, the model rate and time parameters,
faA; bA; cA; tAg, are fit to the estimated transition matrix using least
squares. Fourth, the initial estimates for fsA; aA; bA; cA; tAg are
refined using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) opti-
mization algorithm to maximize the forward likelihood of the
observed tumor read depths, and copy number profiles are produced
from the Viterbi decoding.

2.5.1 Negative binomial mean and variance calculations

The variance and mean of the negative binomial distribution on
read depth are related using a second-degree polynomial, defined in
Equation 2. A second-degree polynomial was chosen to maximize
the adjusted R-squared value on real diploid data (Navin et al.,
2011), without over-specifying the model (see Supplementary
Material S2.1).

To determine the constants fa, b, cg for a given set of observed
diploid data, we calculate the per window expected mean number of
reads and variance as specified in Equation 2. Next, we maximize
the likelihood of the observed diploid data using the Nelder-Mead
method for optimization to find the optimal values of fa, b, cg.
These constants are then used for tumor emission probability calcu-
lations (see Supplementary Material S2.2 for technical optimization
details).

2.5.2 Library Size scaling factors

Because each sequenced cell will have a different total number of
reads, the expected number of reads for each cell needs to be scaled
accordingly. Notably, we calculate these cell specific library size
scaling factors in a way that accounts for changes in the distribution
of reads across the genome caused by CNAs. From Equation 1, let
TA ¼ total reads in tumor cell A (across n windows), such that

EðTAÞ ¼
Xn

i¼1

qiA �
li

2

� �
� sA þ e

� �
(7)

ŝA ¼
TA � nePn

i¼1

qiA � li

2

� 	 (8)

We define qiA as copy number in the ith window from cell A’s
Viterbi decoding path, updated after each iteration of the Baum–
Welch algorithm, such that the library size scaling factor estimate

continually incorporates changes in estimated copy number across
the genome. Initial estimates of sA are based on the ratio of tumor
and average diploid library sizes, and updated according to
Equation 8 in subsequent iterations of the Baum–Welch algorithm.

Because sA estimation can get stuck in local minima, we use sev-
eral initial estimates of sA;initial;h; h 2 f1;2; 3g. The first is set to

sA;initial;1 ¼ cell A library size
average diploid library size. Subsequent starting points are set to

sA;initial;2 ¼ 2� sA;final;1; sA;initial;3 ¼ 4� sA;final;1. Skipped and rarely

visited intermediate copy number states (e.g. overwhelmingly
observing even copy number states genome wide, with odd states
observed at 0 or near 0 frequencies) are hallmarks of a local minima
for sA. Estimates of sA;final that display this pattern are excluded, and

the sA;final estimate with the highest likelihood is used (see

Supplementary Material S3 for further details on filtering sA;final

values).

2.5.3 Modified Baum–Welch

We use the standard Baum-Welch algorithm to estimate the transi-
tion matrix and initial probability vector, resulting in unconstrained
estimates of the transition matrix and initial probability vector.
However, we do not use Baum–Welch to directly estimate an emis-
sion probability matrix, as emission probabilities are governed by
Equation 1, which is only affected by sA estimates (calculated by
Equation 8; see Section 2.5.2).

Next, we fit our model parameters, faA;bA; cA; tAg to the esti-
mated transition matrix using least squares to minimize the sum of
squared errors between the Baum-Welch estimated transition matrix
and the transition matrix determined by the model parameters.

2.5.4 BFGS parameter estimation and inferring CNAs

Given estimates from previous steps, the parameters
fsA; aA; bA; cA; tAg are refined for each tumor cell A, by maximizing
the log likelihood (calculated using the Forward Algorithm) using
the BFGS optimization algorithm, an unconstrained quasi-Newton
optimization method that approximates the second derivative of the
log likelihood by iteratively calculating the gradient (Fletcher, 2000)
(see Supplementary Material S4 for technical details on BFGS
implementation).

Finally, the most likely copy number sequence for each cell is
reported using the Viterbi decoding algorithm.

We note that some of the heuristics described in the previous sec-
tions could be avoided using a full likelihood estimation using BFGS
without the intermediate step of an unconstrained Baum–Welch op-
timization. However, we find that such optimization is slower, as
the Baum–Welch optimization is substantially faster than the BFGS
optimization. In addition, using model parameters fitted to the
Baum–Welch results using least squares, without BFGS refinement,
results in inaccurate CNA calling, thereby showing the importance
of well estimated model parameters (see Supplementary Material
S5). Finally, using multiple starting points, as described above, was
found to be necessary to avoid the optimization getting stuck in
local, but not global, optima.

2.6 Real data preprocessing
We applied SCONCE to two published datasets aligned to hg19
[which was discretized into non-overlapping 250 kb uniform bins
using bedtools (Quinlan and Hall, 2010)]. The first consists of 34
diploid cells (as determined by cell sorting), and 4 tumor subpopula-
tions (24, 24, 4 and 8 cells, respectively) from one triple negative
breast cancer patient (Navin et al., 2011), a cancer type with preva-
lent CNAs (Li et al., 2020). The second consists of 10k cells across 5
sections of one triple negative ductal carcinoma sample (10x
Genomics, 2019). Section A was treated as the diploid sample, as
determined by (10x Genomics, 2018). Standard data preprocessing
and quality control steps were used to prepare the raw data (see
Supplementary Material S6 for details). For both real and simulated
datasets, we used the averaged diploid cells to calculate the negative
binomial distribution constants, fa, b, cg, and as the matched

Fig. 1. Overview of the SCONCE model training procedure. Tumor and diploid

sequencing files must be preprocessed into bed files of read depth per genomic

window
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normal sample to determine the somatic copy number for each
tumor cell.

2.7 Other methods
To evaluate the accuracy of the inference procedure, we compared
SCONCE with HMMcopy (Lai et al., 2019; Shah et al., 2006),
CopyNumber (Nilsen et al., 2012), DNAcopy (Olshen et al., 2004;

Venkatraman and Olshen, 2007), AneuFinder (Bakker et al., 2016;
Taudt, 2018) and SCICoNE (Kuipers et al., 2020). We limited our

comparison to methods that have previously been used on the
(Navin et al., 2011) dataset (Baslan et al., 2012), and that, similarly
to SCONCE, do not require bam files or SNPs. See Supplementary

Material S7 for full details for running each method.

3 Results

3.1 GC content and mappability
Because GC content and sequence mappability can bias read distri-

butions, many methods explicitly incorporate corrections for GC
content and sequence mappability. However, any technical noise
that would affect the tumor sequencing would also affect the diploid

sequencing obtained using the same technology, so in SCONCE,
these corrections are already directly accounted for in our emission

probabilities via the diploid mean.
To verify this, we examined prediction accuracy of expected

tumor read counts per window with different amounts of informa-
tion. For window i, let li be the mean diploid read count, fi be the
GC content, and gi be the mappability from the Duke Uniqueness of

35 bp Windows from ENCODE/OpenChrom (UCSC accession
wgEncodeEH000325) (Derrien et al., 2012; Dunham et al., 2012).
For each tumor cell, A, from the previously published data in Navin

et al. (2011), we predicted the ith window tumor read depth, xiA,
using various linear regressions on fli; fi; gig, then calculated the

sum of squared errors (SSE) between predicted and actual tumor
read depths. Boxplots of the SSE per cell are shown in Figure 2 and
empirical cumulative distribution function (ECDF) plots are shown

in Supplementary Figure S4 for A : xiA � li; B : xiA � li þ fi; C :
xiA � li þ gi; D : xiA � li þ fi þ gi; E : xiA � fi; F : xiA � gi; G :

xiA � fi þ gi:
The sum of squared errors remains consistently low across mod-

els that incorporate the diploid mean (models A, B, C and D), and
have overlapping ECDF plots, while the SSE increases for models
that depend solely on GC content and mappability (models E, F and

G). Because adding the GC content and mappability did not perform
significantly differently from the diploid mean alone (two sample

KS-test on the cumulative distribution of SSE,
D ¼ 0:033333;P� value ¼ 1), we conclude that using the diploid
mean is sufficient, and do not add GC or mappability corrections.

This conclusion is robust to changes in window size and binning
method (i.e. uniformly sized bins versus variably sized bins with
equal numbers of uniquely mappable bases).

3.2 Absolute copy number accuracy
To compare the accuracy of each copy number calling method, we
compared the absolute copy number accuracy, scaled copy number
accuracy and breakpoint accuracy across eleven simulated datasets.
For brevity, representative simulation datasets are shown in
Figure 3, and accuracy results across all simulation sets are shown in
Supplementary Figures S5–S7. Recall that these datasets were simu-
lated under a more realistic non-Markovian model (described in
Section 2.1) that differs from any of the models compared here,
including SCONCE. There is, therefore, no reason to presume that
the results are particularly biased toward favoring SCONCE be-
cause of a match between estimation and simulation model
assumptions.

To measure absolute copy number accuracy, we calculated the
sum of squared errors (SSE) between true copy number and esti-
mated copy number for each cell and method across all windows.
Because CopyNumber and DNAcopy do not output absolute copy
number calls, their results were optimally scaled and shifted to min-
imize SSE. In addition, DNAcopy does not output any calls in
regions of 0 reads, so these regions were excluded from all SSE cal-
culations for DNAcopy. Overall, SCONCE has similar or lower
error rates than AneuFinder, and consistently significantly lower
error rate than CopyNumber, DNAcopy, HMMcopy and SCICoNE
(Fig. 3).

For example, in Simulation Set H (consisting of many very short
and spiky events per cell under the binned model, described in
Supplementary Table S2H and Supplementary Fig. S1H; Fig. 3A),
the median SSE for SCONCE is 579.00, 67.00 and 66.50, for k¼5,
10, 15, respectively. Of note, because SCONCE cannot call copy
numbers above the user specified k, its error rate is significantly

Fig. 2. Sum of squared errors (SSE) is shown for each linear regression of observed

tumor read depth in window i and cell A (xiA) on mean diploid read depth (li), GC

content (fi) and mappability (gi). SSE is calculated from the differences between the

predicted read count and observed read count for each tumor cell in Navin et al.

(2011) (uniformly sized 250 kb bins). No statistically significant difference in error

is observed by adding GC or mappability information to the diploid null model

Fig. 3. Various accuracy results are shown for three simulation parameter sets, H

(consisting of very short and spiky CNAs under the binned model; Supplementary

Table S2H and Supplementary Fig. S1H), G (many overlapping CNAs with max-

imum k¼ 8 under the binned model; Supplementary Table S2G and Supplementary

Fig. S1G) and C (mainly large deletions under the line segment model;

Supplementary Table S1C), in the first, second and third columns, respectively. In

the first row, the sum of squared errors (SSE) between simulated ploidy and esti-

mated ploidy is shown across parameter sets. Each dot represents the error for one

cell and the median SSE is shown with a gray line and printed at the top of each col-

umn. In the second row, the SSE is optimally scaled and shifted for the same datasets

for each method to remove errors due to scaling. In the third row, x (defined in

Equation 9) and total breakpoint distance is shown for each method. Each dot rep-

resents one cell, colored by method. SCONCE consistently has lower SSE values, x
values closer to 1 and lower total breakpoint distance compared to other methods

SCONCE (Single Cell cOpy Numbers in CancEr) 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac041/6515610 by O

U
P site access,  sandra_hui on 11 February 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac041#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac041#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac041#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac041#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac041#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac041#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac041#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac041#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac041#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac041#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac041#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac041#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac041#supplementary-data


higher when the true simulated copy number is greater than k (e.g.
in the k¼5 case). The median SSE values for k¼10, 15, however,
are lower than the median SSE of 197.00 for AneuFinder.
Meanwhile, the median SSE values for HMMcopy and SCICoNE
were 2530.50 and 2226.00, respectively, while the scaled median
SSE values for CopyNumber (in individual and multisample modes,
respectively) were 2510.12 and 2475.81, and scaled median SSE of
1530.52 for DNAcopy.

In Simulation Set G (made of many overlapping CNAS with
maximum k¼8 under the binned model, described in
Supplementary Table S2G and Supplementary Fig. S1G; Fig. 3B),
SCONCE with k¼10, 15 outperforms all other methods, with me-
dian SSE values of 136.00 and 148.00, respectively. As expected,
SCONCE with k¼5 has a higher median SSE of 9056.50 as its in-
ference is limited by the maximum k value. Meanwhile, AneuFinder,
HMMcopy and SCICoNE have median SSE values of 222.50,
30 378.50 and 27 999.00, respectively. DNAcopy and
CopyNumber (in individual and multisample modes) have scaled
median SSE values of 5265.23, 6841.98 and 6741.10.

In Simulation Set C (consisting of mainly deletions under the line
segment model, described in Supplementary Table S1C; Fig. 3C),
AneuFinder and HMMcopy have scaling problems, while SCONCE
does not. The median SSE values for SCONCE are 10.96, 11.09 and
11.11 for k¼5, 10, 15, but the median SSE values for AneuFinder
and HMMcopy are 6545.67 and 39 974.92. Both AneuFinder and
HMMcopy tend to incorrectly double copy number estimates. The
scaled median SSE values for DNAcopy and CopyNumber (in individ-
ual and multisample modes) were 947.50, 200.56 and 194.97. Of
note, SCICoNE could not detect any breakpoints in this dataset and
so could not completely run to produce any copy number profiles.

3.3 Scaled copy number accuracy
To check if the differences in median SSE between methods were due
to scaling issues, we applied the previously described scaling and shift-
ing procedure to minimize the SSE between true simulated copy num-
ber and estimated copy number for all methods. The median SSE
values for CopyNumber and DNAcopy did not change here, as their
outputs were already scaled and shifted. With this optimal rescaling,
SCONCE consistently outperforms or is on par with other methods.

Although the median SSE for SCONCE with k¼5 in Simulation
Set H (Supplementary Table S2H and Supplementary Fig. S1H)
decreases from 579.00 to 549.98, rescaling does not address the
underlying upper limit on copy number as determined by k
(Fig. 3D). Similarly, under Simulation Set G (Supplementary Table
S2G and Supplementary Fig. S1G), rescaling SCONCE with k¼5
causes the median SSE to drop from 9056.40 to 5883.34, but it does
not address same the root problem (Fig. 3E). The median SSEs for
the other methods for Simulation Set H and G (Fig. 3D and E) also
decrease, but not significantly.

In contrast, the median SSE values for AneuFinder and
HMMcopy for Simulation Set C (Supplementary Table S1C) drops
significantly from 6545.67 to 8.18, and from 39 974.92 to 3377.62,
respectively, while the median SSE for SCONCE changed only
slightly, to 10.88, 11.06 and 11.09 for k¼5, 10, 15. This shows
AneuFinder’s high median SSE values for Simulation Set C were due
to incorrect scaling, rather than incorrect breakpoint detection and
segmentation. However, although HMMcopy’s median SSE value
dropped by an order of magnitude by from rescaling, the remaining
high median SSE value implies other issues remain, such as poor
breakpoint detection.

3.4 Breakpoint detection accuracy
To evaluate program accuracy without the confounding factors of
absolute or scaled copy number estimates, we compared the break-
point detection accuracy between each program, by measuring the
total distance between true and inferred breakpoints, penalized by
the number of inferred breakpoints relative to the number of true
breakpoints. Specifically, for each true breakpoint, we calculated
the distance to the nearest inferred breakpoint in either direction,
and summed this distance across the genome. Because inferring

many false positive breakpoints would artificially decrease this
breakpoint distance, we defined x as

x ¼ inferred breakpoints

true breakpoints
(9)

such that lowest total breakpoint distance and x values closest to 1
indicate highest breakpoint detection accuracy.

Across simulation sets, SCONCE consistently has x values clos-
est to 1 and total breakpoint distances that are lower or on par with
other methods. For example, in Simulation Set H (Supplementary
Table S2H and Supplementary Fig. S1H; Fig. 3G), x values for
SCONCE for k¼5, 10, 15 all cluster near 1, with median x values
of 0.9302, 0.9321 and 0.9321, respectively. Median x values for
AneuFinder, DNAcopy, CopyNumber (in individual and multisam-
ple modes), HMMcopy and SCICoNE, are 0.7330, 0.7828, 0.5067,
0.5045, 0.3408 and 0.5451, respectively. In addition, SCONCE has
the lowest median total breakpoint distance across k¼5, 10, 15 val-
ues (1028.0, 1013.5 and 1020.0), while median total breakpoint dis-
tances for other programs (in the same order as above) are 3119.5,
3253.5, 9255.5, 9501.0, 13 941.0 and 20 087.0. Of note, although
SCONCE with k¼5 had a higher median SSE value than
AneuFinder for this dataset because many true copy numbers were
above 5 (Fig. 3A), SCONCE still outperformed AneuFinder in terms
of breakpoint detection accuracy.

Furthermore, in Simulation Set G (Supplementary Table S2G
and Supplementary Fig. S1G; Fig. 3H), SCONCE has median x val-
ues closest to 1 for k¼10, 15 (0.9499 and 0.9441) and lowest me-
dian total breakpoint distances (185.0 and 209.5). However, for
k¼5, SCONCE is unable to detect additional copy number changes
for regions with copy number greater than 5, leading to median x ¼
0:8908 and median distance of 1468. AneuFinder, DNAcopy,
CopyNumber (in individual and multisample modes), HMMcopy,
and SCICoNE had median x values of 0.9, 0.9889, 0.8983, 0.9278,
0.6034 and 0.9444, respectively, and median total breakpoint dis-
tances of 287, 568, 1904.5, 1608, 3834 and 7439.

In addition, in Simulation Set C (Supplementary Table S1C;
Fig. 3I), SCONCE (for k¼5, 10, 15), AneuFinder and DNAcopy
have similar median x values of 0.49, 0.49, 0.4911, 0.4828 and
0.431. CopyNumber (in individual and multisample modes) has
higher median x values of 0.649 and 0.6638, while HMMcopy has
a median x value of 0.1798. Despite CopyNumber’s better x values,
it has much worse median total breakpoint distances (2629 and
2533) than SCONCE (253, 253 and 251.5 for k¼5, 10, 15) and
AneuFinder (301). DNAcopy has a similar median total breakpoint
distance of 3299, while HMMcopy is an order of magnitude worse,
at 23 925. Due to the absence of copy number calls, SCICoNE is
excluded from this panel. Of note, the similar results between
SCONCE and AneuFinder are consistent with AneuFinder perform-
ing poorly (Fig. 3C) in this setting mostly due to scaling problems.
In contrast, these results suggest a combination of scaling and break-
point errors lead to HMMcopy’s poor performance.

Full plots and tables of median x and median breakpoint distan-
ces across all simulation datasets are given in Supplementary
Material S10.

3.5 Genome wide decodings
By plotting the genome wide copy number profile for a representa-
tive cell from each simulation set, we can learn more about the spe-
cific differences between methods that lead to differing error rates.
For brevity, only genome decodings for SCONCE (with k¼10) and
AneuFinder are shown in the main text, as AneuFinder consistently
performed the best out of other methods (see Supplementary Fig. S8
for decodings with other programs and other values of k for
SCONCE across all datasets).

SCONCE is more sensitive to small CNAs. For example, for cell
54 in Simulation Set G (described in Supplementary Table S2G and
Supplementary Fig. S1G; Fig. 4A), SCONCE correctly identifies
small CNAs that AneuFinder and other methods miss, on chromo-
somes 10 (right arrow), 11, 12 and 15, ranging in size from 6 to 13
windows (comparisons to other methods are shown in
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Supplementary Fig. S8G). In one cell from Simulation Set H
(described in Supplementary Table S2H and Supplementary Figs
S1H and S8H), SCONCE has a total breakpoint distance at least
one order of magnitude smaller than all other methods and x value
closest to 1. In particular, CopyNumber and SCICoNE only call
about half as many breakpoints as necessary, while HMMcopy only
calls about a third, resulting in high breakpoint distances for all
three methods. DNAcopy and AneuFinder have similar total break-
point distances and predict about three quarters of the necessary
breakpoints, but still struggle to call small events.

A similar effect plays out in the real data. For example, by exam-
ining cell SRR053675 from the (Navin et al., 2011) dataset in
Supplementary Figure S9B, small CNAs (between 5 and 22 250 kb
windows in length, on chromosomes 9, 10, 12, 13 and 18) are con-
sistently missed by other methods, while SCONCE calls these. In
addition, for the cell with barcode AAACCTGGTTCTTTGT-1
from the (10x Genomics, 2019) dataset, shown in Supplementary
Figure S9C, SCONCE detects copy number events on chromosomes
6, 10, 13, 17, 21 and 22 that are not detected by other methods,
with sizes ranging from 5 to 20 windows.

SCONCE also calls CNA breakpoints closer to the true break-
points. In cell 54 from Simulation Set G (Fig. 4A), SCONCE detects
breakpoints more accurately than AneuFinder [arrows on chromo-
somes 2, 7, 8 and 10 (left)], with differences ranging from 3 to 35
windows in size. In cell 95 from Simulation Set J (consisting of many
overlapping CNAs, with k¼8 and uniform initialization matrix
under the binned model, described in Supplementary Table S2J and
Supplementary Figs S1J and S8J), although AneuFinder, DNAcopy
and CopyNumber all have x values close to 1, they all have higher
total breakpoint distance values than SCONCE (with k¼10, 15),
resulting from erroneously shifting the boundaries of each CNA.
HMMcopy is unable to predict enough copy number events, while
SCICoNE predicts too many. In both cases, CNAs are predicted in
incorrect positions.

As noted before, the value of k must be set high enough to allow
a wide enough copy number range in SCONCE. For example, in cell
54 from Simulation Set G (Supplementary Fig. S8G), this limitation
can be seen in chromosomes 1, 2, 4, 10 and 17–20, where the true
copy number reaches a maximum of 8, but SCONCE’s copy number

estimates are limited to k¼5. However, once k is set large enough,
SCONCE accurately predicts the true copy number state.

In addition, in simulations with mostly deletions (Simulation Set
C, under the line segment model, described in Supplementary Table
S1C), AneuFinder and HMMcopy consistently and incorrectly dou-
ble the estimated copy number, leading to high SSE values, while
SCONCE does not (Fig. 3C, Supplementary Fig. S8C). Specifically,
AneuFinder and HMMcopy mainly call copy numbers of f0, 2, 4g,
instead of f0, 1, 2g. As in Section 3.3, AneuFinder’s scaled SSE val-
ues dropped, thereby verifying the existence of a scaling problem. In
contrast, HMMcopy’s remaining large-scaled SSE values are caused
by not predicting enough CNAs, resulting in high total breakpoint
distances and low x values.

Furthermore, SCONCE considerably outperforms methods like
AneuFinder, DNAcopy, HMMcopy and SCICoNE in regions of 0
tumor read coverage. By using the diploid null model, we are able to
separate between true deletions and areas that have missing data
due to sequencing noise, and make the most parsimonious calls ra-
ther than assuming copy number 0. For example, AneuFinder con-
sistently predicts copy number 0 for centromeres and telomeres,
highlighted with arrows in Figure 4B in the centromeres of chromo-
somes 1, 9 and 16, and in the telomeres of chromosomes 13, 14, 15,
21 and 22. In all panels of Supplementary Figure S9, DNAcopy com-
pletely skips telomeres with no tumor coverage, HMMcopy occa-
sionally predicts copy number 0 for entire chromosomes when one
telomere is missing, and SCICoNE inconsistently predicts copy num-
ber 0 for centromeres and telomeres. We note that this problem
observed in the real data was not contributing to the performance of
these methods in the simulated data, as no regions with missing dip-
loid data were simulated.

4 Discussion

CNAs are an important driver in cancer evolution, and accurately
detecting them on a single cell level can deepen our understanding of
tumorigenesis. In this article, we derive several models of CNAs for
inference and simulation. We show that using HMMs derived from
models of the evolutionary process that generate CNAs, more accur-
ate inferences of CNA could be obtained. The method for inference

Fig. 4. Genome wide copy number decodings are shown for representative cells from simulations and real data. Cell 54 from simulation Set G (many overlapping CNAs with

k¼8 under the binned simulation model, described in Supplementary Table S2G and Supplementary Fig. S1G) is shown in (A), and cell SRR054570 from Navin et al. (2011)

is shown in (B). Genomic window is plotted along the x-axis, per window read depth is shown along the left y-axis, and copy number is plotted along the right y-axis. Black

vertical lines denote chromosome boundaries, gray dots represent observed tumor read depth in each window, the red dotted line denotes the true copy number from simula-

tion (where applicable), the light blue line shows the mean diploid read count, the light blue band shows 61 standard deviation in the diploid read count, and the colored lines

denote the copy number decoding from each method. Black arrows highlight regions with differences in CNA calls between SCONCE and AneuFinder. Genome decodings

from other methods and additional datasets are shown in Supplementary Material S11
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based on these models, SCONCE, is available as an opensource
computer package at https://github.com/NielsenBerkeleyLab/sconce.

One limitation of SCONCE is that it requires data from diploid
cells sequenced on the same platform as the tumor cells. While this
increases accuracy by accounting for platform-specific biases and
single-cell sequencing errors, it also potentially increases sequencing
costs to sequence diploid cells, which may not be directly of interest
to investigators. However, diploid single cells are often produced in-
cidentally as a by-product of the tumor sequencing strategy. This is,
for example, true for the two real datasets analyzed here. In such
cases, there is no extra cost involved in the use of diploid cells for
calibration.

Another limitation of SCONCE is that no allele specific or phas-
ing information is used. Incorporating allele frequency and genotype
likelihoods of heterozygous sites can increase confidence and clarity
in copy number calls, and is the subject of future work.

One of the key strengths of SCONCE over competing methods is
its principled Markovian approximation to the copy number process
along the length of the genome. This allows for future interpreta-
tions and applications of model parameters to understand tumor
evolution. Specifically, SCONCE learns transition rate parameters
fa; b; cg, time t and library size scaling factors, and we note that
these evolutionary parameters could potentially be used directly for
estimating phylogenies.

Compared to other methods, SCONCE has increased sensitivity
in calling very small CNAs, particularly those smaller than 5500 kb.
In addition, in cells with substantial copy number losses, SCONCE
can accurately create copy number profiles without erroneous copy
number doublings. This is due to SCONCE’s method of estimating
library sizes using the Viterbi decoding to account for how changes
in the copy number profile necessarily impact the library scaling
factor.

Furthermore, because SCONCE uses the averaged diploid data
as a null model, in regions with zero tumor read coverage, it can dif-
ferentiate between genomic loss and sequencing noise, which other
methods cannot do. In particular, in regions with diploid coverage
but no tumor reads, SCONCE calls copy number 0 and in regions
without coverage in either the diploid cells or the tumor cell,
SCONCE makes the most parsimonious call. This increases CNA
calling accuracy of hard to sequence regions, such as telomeres, cen-
tromeres, and repetitive regions.

In conclusion, we present an accurate and principled evolution-
ary model for calling CNAs in single-cell whole genome sequencing
of tumors, with implications for broader applications.
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